Abstract:
In some embodiments, the present disclosure relates to a method of operating an RRAM cell having a PMOS access transistor. The method may be performed by turning on a PMOS transistor having a drain terminal coupled to a lower electrode of an RRAM device. A first voltage is provided to a source terminal of the PMOS transistor, and a second voltage is provided to a bulk terminal of the PMOS transistor. The second voltage is larger than the first voltage. A third voltage is provided to an upper electrode of the RRAM device. The third voltage is larger than the first voltage.
Abstract:
The present disclosure, in some embodiments, relates to a resistive random access memory (RRAM) cell. The RRAM cell has a bottom electrode disposed over a lower interconnect layer and a data storage layer having a first thickness over the bottom electrode. A capping layer is disposed over the data storage layer. The capping layer has a second thickness that is in a range of between approximately 2 and approximately 3 times thicker than the first thickness. A top electrode is disposed over the capping layer and an upper interconnect layer is disposed over the top electrode.
Abstract:
A memory architecture includes: a first memory macro comprising a first plurality of memory cells that each comprises a first variable resistance dielectric layer with a first geometry parameter; and a second memory macro comprising a second plurality of memory cells that each comprises a second variable resistance dielectric layer with a second geometry parameter, wherein the first geometry parameter is different from the second geometry parameter thereby causing the first and second memory macros to have first and second endurances. The first and second variable resistance dielectric layers are formed using a single process recipe. The first endurance comprises a maximum number of cycles for which the first plurality of memory cells can transition between first and second logical states, and the second endurance comprises a maximum number of cycles for which the second plurality of memory cells can transition between the first and second logical states.
Abstract:
The present disclosure relates to an integrated circuit configured to mitigate damage to MIM decoupling capacitors. In some embodiments, the integrated chip has a lower metal interconnect layer arranged over a substrate. A plurality of MIM (metal-insulator-metal) structures are arranged over the lower metal interconnect layer, and a plurality of memory cells are arranged over the lower metal interconnect layer at a location laterally offset from the plurality of MIM structures. An upper metal interconnect layer is arranged over the plurality of MIM structures and the plurality of memory cells. One or both of the lower metal interconnect layer and the upper metal interconnect layer are comprised within a conductive path that electrically couples the plurality of MIM structures in a series connection. The plurality of MIM structures and the plurality of memory cells comprise multi-layer structures having a substantially same shape.
Abstract:
The present disclosure relates to a method and apparatus for performing a read operation of an RRAM cell, which applies a non-zero bias voltage to unselected bit-lines and select-lines to increase a read current window without damaging corresponding access transistors. In some embodiments, the method may be performed by activating a word-line coupled to a row of RRAM cells comprising a selected RRAM device by applying a first read voltage to the word-line. A second read voltage is applied to a bit-line coupled to a first electrode of the selected RRAM device. One or more non-zero bias voltages are applied to bit-lines and select-lines coupled to RRAM cells, within the row of RRAM cells, having unselected RRAM devices.
Abstract:
In some embodiments, the present disclosure relates to a method of operating an RRAM cell having a PMOS access transistor. The method may be performed by forming an initial conductive filament within a dielectric data storage layer of an RRAM cell having a bottom electrode connected to a drain terminal of a PMOS transistor and a top electrode separated from the bottom electrode by the dielectric data storage layer. The initial conductive filament is formed by turning on the PMOS transistor by providing a substantially zero first forming voltage to a gate terminal of the PMOS transistor, by providing a substantially zero second forming voltage to a source terminal of the PMOS transistor, by providing a first non-zero forming voltage to a bulk terminal of the PMOS transistor, and by providing a second non-zero forming voltage to the top electrode.
Abstract:
A resistive random access memory (RRAM) cell with a high κ layer based on a group-V oxide and hafnium oxide is provided. The RRAM cell includes a bottom electrode layer, a group-V oxide layer arranged over the bottom electrode layer, and a hafnium oxide based layer arranged over and abutting the group-V oxide layer. The RRAM cell further includes a capping layer arranged over and abutting the hafnium oxide based layer, and a top electrode layer arranged over the capping layer. A method for manufacturing the RRAM cell is also provided.
Abstract:
The present disclosure relates to a method of forming an integrated circuit that prevents damage to MIM decoupling capacitors, and an associated structure. In some embodiments, the method comprises forming one or more lower metal interconnect structures within a lower ILD layer over a substrate. A plurality of MIM structures are formed over the lower metal interconnect structures, and one or more upper metal interconnect structures are formed within an upper ILD layer over the plurality of MIM structures. Together the lower and upper metal interconnect structures electrically couple the plurality of MIM structures in a series connection between a first voltage potential and a second voltage potential. By placing the MIM structures in a series connection, dissipation of the first voltage potential (e.g., a supply voltage) is spread out over the MIM structures, thereby reducing the voltage potential difference between electrodes of any one of the MIM structures.
Abstract:
The present disclosure relates to an integrated chip comprising an RRAM cell that is driven by a PMOS transistor, and an associated method of formation. In some embodiments, the integrated chip has a PMOS transistor arranged within a semiconductor substrate. A resistive RRAM cell is arranged within an inter-level dielectric (ILD) layer overlying the semiconductor substrate. The RRAM cell has a first conductive electrode separated from a second conductive electrode by a dielectric data storage layer having a variable resistance. The first conductive electrode is connected to a drain terminal of the PMOS transistor by one or more metal interconnect layers. The use of a PMOS transistor to drive the RRAM cell allows for impact of the body effect to be reduced and therefore allows for a reset operation to be performed at a low power and in a short amount of time.
Abstract:
The present disclosure relates to an integrated circuit, which includes a semiconductor substrate and an interconnect structure disposed over the semiconductor substrate. The interconnect structure includes a lower metal layer, an intermediate metal layer disposed over the lower metal layer, and an upper metal layer disposed over the intermediate metal layer. An upper surface of the lower metal layer and a lower surface of the intermediate metal layer are spaced vertically apart by a first distance. A resistive random access memory (RRAM) cell is arranged between the lower metal layer and the upper metal layer. The RRAM cell includes a bottom electrode and a top electrode which are separated by a data storage layer having a variable resistance. The data storage layer vertically spans a second distance that is greater than the first distance.