Abstract:
In some embodiments, the present disclosure relates to a resistive random access memory (RRAM) memory circuit. The memory circuit has a word-line decoder operably coupled to a first RRAM device and a second RRAM device by a word-line. A bit-line decoder is coupled to the first RRAM device by a first bit-line and to the second RRAM device by a second bit-line. A bias element is configured to apply a first non-zero bias voltage to the second bit-line concurrent to the bit-line decoder applying a non-zero voltage to the first bit-line.
Abstract:
In some embodiments, the present disclosure relates to a resistive random access memory (RRAM) memory circuit. The memory circuit has a word-line decoder operably coupled to a first RRAM device and a second RRAM device by a word-line. A bit-line decoder is coupled to the first RRAM device by a first bit-line and to the second RRAM device by a second bit-line. A bias element is configured to apply a first non-zero bias voltage to the second bit-line concurrent to the bit-line decoder applying a non-zero voltage to the first bit-line.
Abstract:
The present disclosure relates to a method and apparatus for performing a read operation of an RRAM cell, which applies a non-zero bias voltage to unselected bit-lines and select-lines to increase a read current window without damaging corresponding access transistors. In some embodiments, the method may be performed by activating a word-line coupled to a row of RRAM cells comprising a selected RRAM device by applying a first read voltage to the word-line. A second read voltage is applied to a bit-line coupled to a first electrode of the selected RRAM device. One or more non-zero bias voltages are applied to bit-lines and select-lines coupled to RRAM cells, within the row of RRAM cells, having unselected RRAM devices.
Abstract:
The present disclosure, in some embodiments, relates to a method of operating a resistive random access memory (RRAM) array. The method includes applying a word-line voltage to a selected word-line during a read operation. A non-zero voltage is applied to a selected bit-line during the read operation. A first voltage is applied to a selected source-line during the read operation. The first voltage is smaller than a second voltage applied to an unselected source-line during the read operation.
Abstract:
A method for etching an etch layer formed on a front side of a wafer and a wafer etching apparatus are provided. The wafer etching apparatus includes a first flow channel, a temperature-regulating module, and a second flow channel. The first flow channel is configured to carry a preheated/precooled liquid for controlling a temperature of a wafer. The temperature-regulating module is coupled to the first flow channel. The temperature-regulating module is configured to control a temperature of the liquid in the first flow channel. The second flow channel is configured to carry an etchant for etching an etch layer formed on a front side of the wafer. The method includes: controlling the temperature of the wafer by using the preheated/precooled liquid; and etching the etch layer with the etchant.
Abstract:
The present disclosure relates to a method and apparatus for performing a read operation of an RRAM cell, which applies a non-zero bias voltage to unselected bit-lines and select-lines to increase a read current window without damaging corresponding access transistors. In some embodiments, the method may be performed by activating a word-line coupled to a row of RRAM cells comprising a selected RRAM device by applying a first read voltage to the word-line. A second read voltage is applied to a bit-line coupled to a first electrode of the selected RRAM device. One or more non-zero bias voltages are applied to bit-lines and select-lines coupled to RRAM cells, within the row of RRAM cells, having unselected RRAM devices.
Abstract:
The present disclosure relates to an integrated circuit, which includes a semiconductor substrate and an interconnect structure disposed over the semiconductor substrate. The interconnect structure includes a lower metal layer, an intermediate metal layer disposed over the lower metal layer, and an upper metal layer disposed over the intermediate metal layer. An upper surface of the lower metal layer and a lower surface of the intermediate metal layer are spaced vertically apart by a first distance. A resistive random access memory (RRAM) cell is arranged between the lower metal layer and the upper metal layer. The RRAM cell includes a bottom electrode and a top electrode which are separated by a data storage layer having a variable resistance. The data storage layer vertically spans a second distance that is greater than the first distance.
Abstract:
A method includes rotating a wafer, dispensing a liquid from a center of the wafer to an edge of the wafer to control a temperature of the wafer, and etching an etch layer of the wafer with an etchant during or after dispensing the liquid. The liquid is dispensed through a nozzle.
Abstract:
The present disclosure, in some embodiments, relates to a method of operating a resistive random access memory (RRAM) array. The method includes applying a word-line voltage to a selected word-line during a read operation. A non-zero voltage is applied to a selected bit-line during the read operation. A first voltage is applied to a selected source-line during the read operation. The first voltage is smaller than a second voltage applied to an unselected source-line during the read operation.
Abstract:
The present disclosure relates to an integrated circuit, which includes a semiconductor substrate and an interconnect structure disposed over the semiconductor substrate. The interconnect structure includes a lower metal layer, an intermediate metal layer disposed over the lower metal layer, and an upper metal layer disposed over the intermediate metal layer. An upper surface of the lower metal layer and a lower surface of the intermediate metal layer are spaced vertically apart by a first distance. A resistive random access memory (RRAM) cell is arranged between the lower metal layer and the upper metal layer. The RRAM cell includes a bottom electrode and a top electrode which are separated by a data storage layer having a variable resistance. The data storage layer vertically spans a second distance that is greater than the first distance.