Memory layout for reduced line loading

    公开(公告)号:US12156409B2

    公开(公告)日:2024-11-26

    申请号:US16934166

    申请日:2020-07-21

    Abstract: Various embodiments of the present application are directed a memory layout for reduced line loading. In some embodiments, a memory device comprises an array of bit cells, a first conductive line, a second conductive line, and a plurality of conductive bridges. The first and second conductive lines may, for example, be source lines or some other conductive lines. The array of bit cells comprises a plurality of rows and a plurality of columns, and the plurality of columns comprise a first column and a second column. The first conductive line extends along the first column and is electrically coupled to bit cells in the first column. The second conductive line extends along the second column and is electrically coupled to bit cells in the second column. The conductive bridges extend from the first conductive line to the second conductive line and electrically couple the first and second conductive lines together.

    Memory layout for reduced line loading

    公开(公告)号:US11678494B2

    公开(公告)日:2023-06-13

    申请号:US16934192

    申请日:2020-07-21

    Abstract: Various embodiments of the present application are directed a memory layout for reduced line loading. In some embodiments, a memory device comprises an array of bit cells, a first conductive line, a second conductive line, and a plurality of conductive bridges. The first and second conductive lines may, for example, be source lines or some other conductive lines. The array of bit cells comprises a plurality of rows and a plurality of columns, and the plurality of columns comprise a first column and a second column. The first conductive line extends along the first column and is electrically coupled to bit cells in the first column. The second conductive line extends along the second column and is electrically coupled to bit cells in the second column. The conductive bridges extend from the first conductive line to the second conductive line and electrically couple the first and second conductive lines together.

    RESISTIVE RANDOM ACCESS MEMORY DEVICE

    公开(公告)号:US20230113903A1

    公开(公告)日:2023-04-13

    申请号:US18080696

    申请日:2022-12-13

    Abstract: A memory architecture includes: a plurality of cell arrays each of which comprises a plurality of bit cells, wherein each of bit cells of the plurality of cell arrays uses a respective variable resistance dielectric layer to transition between first and second logic states; and a control logic circuit, coupled to the plurality of cell arrays, and configured to cause a first information bit to be written into respective bit cells of a pair of cell arrays as an original logic state of the first information bit and a logically complementary logic state of the first information bit, wherein the respective variable resistance dielectric layers are formed by using a same recipe of deposition equipment and have different diameters.

    Resistive random access memory device

    公开(公告)号:US11557344B2

    公开(公告)日:2023-01-17

    申请号:US17330248

    申请日:2021-05-25

    Abstract: A memory architecture includes: a plurality of cell arrays each of which comprises a plurality of bit cells, wherein each of bit cells of the plurality of cell arrays uses a respective variable resistance dielectric layer to transition between first and second logic states; and a control logic circuit, coupled to the plurality of cell arrays, and configured to cause a first information bit to be written into respective bit cells of a pair of cell arrays as an original logic state of the first information bit and a logically complementary logic state of the first information bit, wherein the respective variable resistance dielectric layers are formed by using a same recipe of deposition equipment and have different diameters.

    Ferroelectric random access memory (FRAM) cell

    公开(公告)号:US11257844B2

    公开(公告)日:2022-02-22

    申请号:US16569487

    申请日:2019-09-12

    Abstract: A semiconductor device includes a lower intermetal dielectric (IMD) layer, a middle conductive line, and a ferroelectric random access memory (FRAM) structure. The middle conductive line is embedded in the lower IMD layer. The FRAM structure is over the lower IMD layer and the middle conductive line. The FRAM structure includes a bottom electrode, a ferroelectric layer, and a top electrode. The bottom electrode is over the middle conductive line and in contact with the lower IMD layer. The ferroelectric layer is over the bottom electrode. The top electrode is over the ferroelectric layer.

    RRAM STRUCTURE
    7.
    发明申请

    公开(公告)号:US20210111339A1

    公开(公告)日:2021-04-15

    申请号:US16601800

    申请日:2019-10-15

    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a lower inter-level dielectric (ILD) structure surrounding a plurality of lower interconnect layers over a substrate. An etch stop material is disposed over the lower ILD structure. A bottom electrode is arranged over an upper surface of the etch stop material, a data storage structure is disposed on an upper surface of the bottom electrode and is configured to store a data state, and a top electrode is disposed on an upper surface of the data storage structure. A first interconnect via contacts the upper surface the bottom electrode and a second interconnect via contacts the top electrode.

    INTEGRATION METHOD FOR MEMORY CELL

    公开(公告)号:US20210035992A1

    公开(公告)日:2021-02-04

    申请号:US16663952

    申请日:2019-10-25

    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a plurality of lower interconnect layers disposed within a lower dielectric structure over a substrate. A lower insulating structure is over the lower dielectric structure and has sidewalls extending through the lower insulating structure. A bottom electrode is arranged along the sidewalls and an upper surface of the lower insulating structure. The upper surface of the lower insulating structure extends past outermost sidewalls of the bottom electrode. A data storage structure is disposed on the bottom electrode and is configured to store a data state. A top electrode is disposed on the data storage structure. The bottom electrode has interior sidewalls coupled to a horizontally extending surface to define a recess within an upper surface of the bottom electrode. The horizontally extending surface is below the upper surface of the lower insulating structure.

Patent Agency Ranking