Abstract:
An ablation apparatus has an introducer including an introducer lumen, a proximal portion and a distal portion. Two or more electrodes are at least partially positionable in the introducer lumen. Each electrode is configured to be advanced from the introducer distal portion in a deployed state into a selected tissue site to define a volumetric ablation volume. A fluid delivery member is positioned on at least a portion of an exterior of one of the electrodes. The fluid delivery member is configured to be coupled to a fluid medium source. A cable is coupled to the electrodes.
Abstract:
A method of treating a sphincter provides a catheter means and an energy delivery device means coupled to the catheter means. The energy delivery device means has a tissue piercing distal end. The catheter means is introduced into an esophagus. A sphincter exterior surface is pierced with the energy delivery device means tissue piercing distal. The energy delivery device means tissue piercing distal end is advanced a sufficient distance in an interior of the sphincter to a tissue site. Energy is controllably delivered to the tissue site. Controlled cell necrosis is created in the sphincter to reduce a frequency of sphincter relaxation.
Abstract:
A medical probe device comprising a catheter having a stylet guide housing with at least one stylet port in a side thereof and stylet guide means for directing a flexible stylet outward through at least one stylet port and through intervening tissue to targeted tissues. The stylet guide housing has an optical viewing means positioned for viewing the stylet and adjacent structure which includes a fiber optic channel means for receiving a fiber optic viewing device. The fiber optic channel means can include a guide port means for directing longitudinal movement of a fiber optic device with respect to the stylet guide means in a viewing zone and a flushing liquid channel in the stylet guide housing having an exit port positioned to direct flushing liquid issuing therefrom across the end of a fiber optic device when positioned in the viewing zone. The optical viewing means can comprise a viewing window positioned in the stylet guide housing for viewing the stylet when it is directed outward from its respective stylet port. The optical viewing means can include a fiber optic channel in the stylet guide housing for receiving the a fiber optic viewing device and aligning the viewing end thereof with the viewing window. Windowed devices can include a flushing liquid channel in the stylet guide housing having an exit port positioned to direct flushing liquid issuing therefrom across a surface of the viewing window.
Abstract:
A method of treating a sphincter provides a sphincter electropotential mapping device with a mapping electrode. The sphincter electropotential mapping device is introduced into at least a portion of the sphincter. Aberrant myoelectric activity of the sphincter is detected. Energy is delivered from the sphincter electropotential mapping device to treat the aberrant myoelectric activity of the sphincter.
Abstract:
An apparatus to treat a uterus includes a deployable member configured to be positioned in a uterine cavity in at least a partially deployed state to define a microwave chamber in an interior of the deployable member, and removed from the uterine cavity in a non-deployed state. The deployable member is at least partially microwave energy absorbable and formed of a fluid permeable material to house and controllably release a fluidic medium from the microwave chamber when the deployable member is positioned in the uterine cavity in the at least partially deployed state. A microwave emitter is positioned in the microwave chamber, the microwave emitter is configured to be coupled to a microwave energy source and deliver microwave energy to the fluidic medium, wherein the fluidic medium transfers thermal energy from the microwave emitter to a uterine structure.
Abstract:
A medical probe device comprises a catheter having a stylet guide housing with one or more stylet ports in a side wall thereof and a stylet guide for directing a flexible stylet outward through the stylet port and through intervening tissue at a preselected, adjustable angle to a target tissue. The total catheter assembly includes a stylet guide lumen communicating with the stylet port and a stylet positioned in said stylet guide lumen for longitudinal movement from the port through intervening tissue to a target tissue. The stylet can be an electrical conductor enclosed within a non-conductive layer, the electrical conductor being a radiofrequency electrode. Preferably, the non-conductive layer is a sleeve which is axially moveable on the electrical conductor to expose a selected portion of the electrical conductor surface in the target tissue. The stylet can also be a microwave antenna. The stylet can also be a hollow tube for delivering treatment fluid to the target tissue. It can also include a fiber optic cable for laser treatment. The catheter can include one or more inflatable balloons located adjacent to the stylet port for anchoring the catheter or dilation. Ultrasound transponders and temperature sensors can be attached to the probe end and/or stylet. The stylet guide can define a stylet path from an axial orientation in the catheter through a curved portion to a lateral orientation at the stylet port.
Abstract:
An RF treatment apparatus includes a catheter with a catheter lumen. A removable needle electrode is positioned in the catheter lumen in a fixed relationship to the catheter. The needle electrode includes a needle lumen and a needle electrode distal end. A removable introducer is slidably positioned in the needle lumen. The introducer includes an introducer distal end. A first sensor is positioned on a surface of the needle electrode or the insulator. An RF power source is coupled to the needle electrode and a return electrode. An insulator sleeve is slidably positioned around the electrode and includes a second sensor. Resources are associated with the electrodes, sensors as well as the RF power source for maintaining a selected power at the electrode independent of changes in current or voltage.
Abstract:
A medical probe device for contacting tissue within the body a catheter tube having a control end and a probe end. The probe end includes a housing having a port. An element is located within the housing that is movable between a first position confined within the housing and a second position extending through the port outside the housing. The element has a distal tip adapted to penetrate a tissue region during movement between the first and second position. The element comprises an electrode for emitting electromagnetic radio frequency energy into the tissue region, or cannula with an interior lumen for conveying fluid to and from the tissue region, or a sensor for sensing temperature conditions in the tissue region.
Abstract:
A method is provided for forming a stent within a body lumen. According to the method, a distal catheter body is advanced within a body lumen to a section of a body lumen at which a stent is to be formed. One or more expandable members attached to the distal catheter body are expanded such that sections of the body lumen proximal and distal to the stent formation section of the body lumen are occluded, the distal catheter body in combination with the body lumen defining a mold space. A fluent pre-stent composition is delivered to the mold space from outside the body lumen which is continuously in fluent state during pre-stent composition delivery from outside the body lumen to the mold space. The fluent pre-stent composition is then transformed within the mold space to a non-fluent stent composition to form a stent within the mold space.
Abstract:
An apparatus that reduces a volume of a selected site in an interior of the tongue includes a handpiece means and an electrode means at least partially positioned in the interior of the handpiece means. The electrode means includes an electrode means electromagnetic energy delivery surface and is advance able from the interior of the handpiece means into the interior of the tongue. An electrode means advancement member is coupled to the electrode means and configured to advance the electrode means an advancement distance in the interior of the tongue. The advancement distance is sufficient for the electrode means electromagnetic energy delivery surface to deliver electromagnetic energy to the selected tissue site and reduce a volume of the selected site without damaging a hypoglossal nerve. A cable means is coupled to the electrode means.