Abstract:
A catheter-based/intravascular ablation (denervation) system includes a multiplicity of needles which expand open around a central axis to engage the wall of a blood vessel, or the wall of the left atrium, allowing the injection of a cytotoxic and/or neurotoxic solution for ablating conducting tissue, or nerve fibers around the ostium of the pulmonary vein, or circumferentially in or just beyond the outer layer of the renal artery. The expandable needle delivery system is formed with self-expanding materials and include structures, near the end portion of the needles, or using separate guide tubes. The system also includes means to limit and/or adjust the depth of penetration of the ablative fluid into the tissue of the wall of the targeted blood vessel. The preferred embodiment of the catheter delivered through the vascular system of a patient includes a multiplicity of expandable guide tubes that engage the wall of a blood vessel. Injection needles having injection egress at or near their sharpened distal end are then advanced through the guide tubes to penetrate the wall of the blood vessel to a prescribed depth. The ability to provide PeriVascular injection so as to only affect the outer layer(s) of a blood vessel without affecting the media has particular application for PeriVascular Renal Denervation (PVRD) of the sympathetic nerves which lie in the adventitia or outside the adventitia of the renal artery.
Abstract:
Apparatus for providing intrabronchial delivery of neurotoxins to control the effects of asthma comprises a shaft having proximal and distal ends and a neurotoxin applicator assembly disposed on the distal end. The neurotoxin applicator assembly comprises a deployable needle assembly, a rotating needle assembly, and a needle-less injection assembly or a nebulizer assembly.
Abstract:
Medical devices for injecting tissue and methods of use thereof are described. The medical device may comprise a handle, a shaft, and a plurality of needles extending through the shaft, each needle defining a lumen therethrough and being independently moveable along a longitudinal axis of the device to transition from a retracted configuration to an extended configuration. In the extended configuration, a distal portion of each needle may deflect radially outward with respect to the longitudinal axis of the device. The medical device may comprise an end cap coupled to the distal end of the shaft and/or a locking mechanism to selectively lock the needles in the retracted configuration and/or extended configuration.
Abstract:
Agents and devices for affecting nerve function are described. In some variations, a combination of agents, e.g., a cardiac glycoside, an ACE inhibitor, and an NSAID are delivered to affect nerve function. The agent may be delivered locally in a site-specific manner to a targeted nerve or portion of a nerve. For example, the agent may be delivered locally to the renal nerves to impair their function and treat hypertension. One variation of a delivery device includes one or more needle housings supported by a balloon. A delivery needle is slidably disposed within a needle lumen of each needle housing.
Abstract:
A medical device and a method of treating stress urinary incontinence are provided. The device includes a cannula with a plurality of apertures. A plurality of needles is disposed within a lumen of the cannula. A handle includes a housing and a shifter mechanism to translate the plurality of needles from a first position in which the needles are disposed within the lumen of the cannula, to a second position in which a distal portion of each needle extends out of the lumen through respective apertures. The handle also includes a slot including a transversal track defining a potential range of rotational motion of the shifter mechanism with respect to the housing, and a plurality of longitudinal tracks defining a potential range of translational motion of the shifter mechanism with respect to the housing. The shifter mechanism may also rotate the cannula with respect to the handle.
Abstract:
A catheter assembly comprises a catheter including a catheter wall and a lumen extending lengthwise of the wall. The wall has inner and outer surfaces. The wall includes plural openings that extend through the wall and communicate with the lumen. An elongated hollow needle includes a proximal end portion and a distal end portion. The needle is movable in the lumen to move the distal end portion between the openings. The distal end portion is directed radially outward so as to extend into an adjacent opening. The distal end portion has a configuration that stores potential energy when in the lumen. The potential energy is converted to kinetic energy to produce movement of the proximal end portion as the distal end portion moves from the inner surface of the catheter wall across an edge of an opening. The movement of the proximal end portion is haptically perceptible.
Abstract:
A catheter-based/intravascular fluid injection system with application to renal denervation includes a multiplicity of needles which expand open around a central axis to engage the wall of a blood vessel, or the wall of the left atrium, allowing the injection of a cytotoxic and/or neurotoxic solution for ablating conducting tissue, or nerve fibers around the ostium of the pulmonary vein, or circumferentially in or just beyond the outer layer of the renal artery. The expandable delivery system includes expandable components that facilitate positioning of a multiplicity of injection needles against the inside wall of a blood vessel from where they can be advanced. The system also includes means to limit and/or adjust the depth of penetration of the ablative fluid into the tissue of the wall of the targeted blood vessel.
Abstract:
Various agents are described to denerve, modulate, or otherwise affect the renal nerves and other neural tissue. Also, various delivery devices are described to deliver an agent locally to the renal nerves. The delivery devices are positioned in the renal artery and penetrate into the wall of the renal artery to deliver the agent to the renal nerves. The delivery devices may be used to deliver the agent according to longitudinal position, radial position, and depth of the renal nerves relative to the renal artery. In addition, various methods are described to denervate, modulate, or otherwise affect the renal nerves and other neural tissue.
Abstract:
A positionable, direct-injection catheter that can access a specific region of the heart or other organ. The catheter is provided with one or two needle shafts, which may be located within respective sheaths that extend axially along the interior of the lumen of a main catheter shaft. Each needle shaft carries, at a distal end thereof a penetrable element or “needle” that is normally retracted within the distal tip of the main shaft during travel to the target organ, but is subsequently deployed by action of a handle-mounted trigger mechanism to extend the needles into the organ's wall. Each extended needle is curved to relative to the shaft's axis to enter the organ wall in a flattened trajectory that both reduces the chance of puncture through the wall and anchors the needles into the wall during injection (for reduced chance of pullout under pressure). A plurality of apertures which provide for more complete agent delivery rapidly, while maintaining a low delivery velocity to effect treatment delivery in as short a period of time as possible without the problems caused by high velocity delivery. The needles are typically arranged to exit the tip at contralateral orientations relative to each other.
Abstract:
Methods and apparatus for delivery of substances or apparatus to target sites located outside blood vessels within the body of a human or animal patient. A vessel wall penetrating catheter is inserted into the vasculature, positioned and oriented within a blood vessel near the target extravascular site and a penetrator is advanced from the catheter so as to penetrate outwardly through the wall of the blood vessel in the direction of the target site. Thereafter, a delivery catheter is passed through a lumen of the penetrator to the target site. A desired substance or apparatus is then delivered to or obtained from the target site. In some applications, the penetrator may be retracted into the vessel wall penetrating catheter and the vessel wall penetrating catheter may be removed, leaving the delivery catheter in place for chronic or continuous delivery of substance(s) to and/or obtaining of information or samples from the target site. Alternatively, a delivery catheter having an occlusion member or balloon may be advanced into a vein or venule and the occlusion member or balloon may be used to occlude the lumen of the vein or venule during and after injection of a substance through the catheter, such that the substance will not be carried away by normal venous blood flow and will remain in the vein or venule for a sufficient period of time to have its intended effect (e.g. to enter adjacent tissues through capillary beds drained by that vein or venule).