Abstract:
Disclosed are embodiments of an ion beam sample preparation apparatus and methods for using the embodiments. The apparatus comprises an ion beam irradiating means in a vacuum chamber that may direct ions toward a sample, a shield blocking a portion of the ions directed toward the sample, and a shield retention stage with shield retention means that replaceably and removably holds the shield in a position. The shield has datum features which abut complementary datum features on the shield retention stage when the shield is held in the shield retention stage. The shield has features which enable the durable adhering of the sample to the shield for processing the sample with the ion beam. The complementary datum features on both shield and shield retention stage enable accurate and repeatable positioning of the sample in the apparatus for sample processing and reprocessing. Additionally, apparatus kits are disclosed that enable the use of the same shields in the observation of prepared samples.
Abstract:
An apparatus includes a housing defining a chamber in which an electric field is generated, and an internal member provided in the chamber. At least one part of the internal member is formed of a dielectric material. A process is executed in the chamber so that a dielectric deposit is formed on the at least one part of the internal member. An m1(d∈1/dm1) value of the dielectric material and an m2(d∈2/dm2) value of the dielectric deposit are set so that production of particles from the deposit is properly controlled. The term m1 is a mass density of the dielectric material, ∈1 is a permittivity of the dielectric material, m2 is a mass density of the dielectric deposit, and ∈2 is a permittivity of the dielectric deposit.
Abstract:
The present disclosure significantly reduces the waiting time from inserting a specimen holder into an electron microscope until high quality data acquisition is possible. Characterizing the present disclosure, it is a specimen holder partly made of low thermal expansion material. The low thermal expansion material can be any of group 4, 5 or 6 in the periodic table of the elements.
Abstract:
The inventors of this invention conducted a test and found out that to prevent peel-off of an adherent film, it is not of essential importance to set the radius of curvature equal to or larger than a predetermined threshold. The inventors of the present invention also found out that peel-off of an adherent film occurs in the region in which the curvature of a shield changes and is less likely to occur when the change in curvature of the shield is small. Accordingly, the key to the problem is the magnitude of a change in curvature of the shield, so changing the curvature stepwise makes it possible to suppress a large change in curvature, and thus to prevent peel-off of an adherent film free from any disadvantages such as deterioration in film thickness distribution, which may occur due to an increase in size of the shield.
Abstract:
An apparatus includes a conductive structure and an insulated conductor disposed proximate an exterior portion of the conductive structure to modify an electric field about the conductive structure. The insulated conductor has an insulator with a dielectric strength greater than 75 kilovolts (kV)/inch disposed about a conductor.
Abstract:
An apparatus for investigating and/or modifying a sample with charged particles, in particular a scanning electron microscope, is provided. The apparatus comprises a beam (1, 2) of charged particles, a shielding element (10) having an opening (30) for the beam of charged particles to pass through, wherein the opening (30) is sufficiently small and the shielding element (10) sufficiently closely positioned to the surface (20) of the sample to reduce the influence of charge accumulation effects at the surface on the beam of charged particles.
Abstract:
An electron-beam system for curing plastic layers on workpieces has an irradiation chamber, an electron gun, a transport device for conveying workpieces into the irradiation chamber, and a shield as radiation protection. In order to achieve a high throughput of workpieces and effective shielding, provision is made of two or more blocking devices, which can be moved with reference to the transport device and which are arranged in each case as radiation protection on the transport device upstream and downstream of the irradiation chamber, specifically at a spacing in the conveying direction of the transport device in such a way that at least one workpiece fits between two blocking devices.
Abstract:
This invention relates to a scanning electron microscope for detecting secondary electrons from above an objective lens and obtaining an observation image, wherein a shield electrode is disposed for shielding an electric field on an optical axis in order to prevent a primary electron beam from being bent by the electric field generated by a secondary electron detector, a mechanism is provided so as to move the shield electrode to a first position at which the shield electrode shields the electric field on the optical axis and to a second position at which a secondary electron can be collected sufficiently by the electric field, and the shield electrode is moved to the first position during observation by a low acceleration voltage and to a second position during observation by a high acceleration voltage.
Abstract:
A process kit assembly for a process station that includes a cover ring and a shield. The shield includes a lower shield portion configured to interleave with the cover ring. The shield also includes an upper shield portion including a shield port extending from an inner side to an outer side of the upper shield portion. The upper shield portion further includes a shadow surface formed on the inner side configured to shadow the shield port from sputtering deposits. The upper shield portion further includes an upper shield shoulder formed on the outer side. The upper shield portion further includes a lower shield shoulder formed on a lower end of the upper shield portion. The upper shield portion is engageable with an adapter to form an annular chamber around the outer side between the upper shield shoulder and the lower shield shoulder.
Abstract:
An electron detector comprises a sensor module comprising a sensor for detecting electrons, and an electronics module comprising circuitry for processing signals received from the sensor module. Wiring is provided for electrically connecting the sensor module to the electronics module. An adaptor is arranged between the sensor module and the electronics module. The adaptor comprises a passage for the wiring, and shielding elements for shielding from radiation.