Abstract:
An optical phantom produces a time-resolved diffuse reflectance spectrum and includes: a light source; a spatial light modulator; and an optical delay line including optical fibers of different length that produce different time-of-flight distributions, such that different time-of-flight distributions are combined and produce phantom light having the time-resolved diffuse reflectance spectrum.
Abstract:
An apparatus for detecting a material within a sample includes a light emitting unit for directing at least one light beam through the sample. A plurality of units receive the light beam that has passed through the sample and performs a spectroscopic analysis of the sample based on the received light beam. Each of the plurality of units analyze a different parameter with respect to the sample a provide a separate output signal with respect to the analysis. A processor detects the material with respect each of the provided separate output signals.
Abstract:
A super-resolution scanning confocal polarisation contrast microscope is provided. The microscope has a laser light source (1), sample stage (10) for mounting a sample 6 and detector (8). A polarisation controller (3) is used to set the polarisation state of the light beam to any one of a defined set of different polarisation states. A spatial light modulator (5) modulates the light beam in amplitude and/or phase to focus a sub-diffraction-limit central spot on the sample together with unwanted sidebands. A scanning confocal scheme is used with a pin hole 9 in front of the detector (8) so that only that portion of the light is detected which has comes from the central spot, while rejecting light that has been scattered by the sample from the sidebands. Polarisation contrast images with sub-diffraction limit resolution can thus be acquired.
Abstract:
A super-resolution observation device includes an illumination optical system collecting a first illuminating light having a first optical frequency co, on a first region of an observation object, collecting a second illuminating light having a second optical frequency ω2′ on a second region partially overlapping the first region, and collecting a third illuminating light having a third optical frequency ω2 on a third region containing a non-overlap region which is a region of the first region and does not overlap the second region; and an extraction unit extracting a signal light generated in accordance with a change in an energy level of a substance in the non-overlap region from a light generated in all of the first region, the second region, and the third region.
Abstract:
An imaging device includes a camera 31, a light source 32, a polarizer 35 arranged between the camera 31 plus the light source 32 and an object 11, and a spatial light modulator 40A arranged between the polarizer 35 and the object 11 to control a revolution angle of an emitting light polarization plane relative to an incident light polarization plane.
Abstract:
Systems and methods are disclosed to enhance three-dimensional photoacoustic imaging behind, through, or inside a scattering material. Embodiments of the invention can increase the optical fluence in an ultrasound transducer focus and/or enhance the optical intensity using wavefront shaping before the scatterer. The photoacoustic signal induced by an object placed behind the scattering medium can serve as feedback to optimize the wavefront, enabling one order of magnitude enhancement of the photoacoustic amplitude. Using the enhanced optical intensity, the object can be scanned in two dimensions and/or a spot can be scanned by re-optimizing the wavefront before post-processing of the data to reconstruct the image. The temporal photoacoustic signal provides information to reconstruct the third-dimensional information.
Abstract:
Excitation light is focused to a focus within a sample and the focus is scanned within a volume in the sample with scanning optical elements. Signal light emitted from the focus is de-scanned, with the one or more scanning optical elements, onto a wavefront sensor as the focus is scanned within the volume. Based on the descanned signal light, an average aberration created by the volume of the sample of a wavefront of the excitation light is determined. A wavefront of the excitation light is corrected by an amount according to the determined average aberration while the focus is scanned within the volume, the signal light is imaged onto a photosensitive detector as the focus is scanned within the volume, and a wavefront of the imaged signal light is corrected by an amount according to the determined average aberration while the focus is scanned. These steps can be repeated for a plurality of different volumes in the sample, and an image of the sample can be generated based on the detected signal light from scanned foci within the different volumes.
Abstract:
A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.
Abstract:
To avoid unstable light radiation during switching of a phase modulation amount and stimulate desired stimulation points simultaneously, provided is a photo-stimulator which includes an AOM switching on/off of radiation of stimulation light to a specimen S; an LCOS-SLM being capable of modulating a phase of stimulation light once radiation to the specimen S has been turned on by the AOM; and a controller controlling the LCOS-SLM to switch a phase modulation amount of stimulation light and controlling the AOM to switch on/off of radiation of stimulation light, wherein the controller causes the AOM to turn off radiation of stimulation light before the LCOS-SLM starts switching a phase modulation amount, and causes the AOM to turn on radiation of stimulation light after the LCOS-SLM completes switching a phase modulation amount.
Abstract:
A sensing system is provided that includes a transmitter assembly with a light source and a microdisplay device, wherein the transmitter assembly defines an optical beam transmission path to provide illumination of a substantially one-dimensional (1D) region of a target area, the microdisplay device comprising a plurality of controllable elements for causing the illumination to be a substantially 1D pattern of light along the 1D region. The system further includes a receiver assembly for defining a return optical signal transmission path from the 1D region and collecting return optical signals from the 1D region. The system also includes a processing component for generating sensor information associated with the 1D region by processing the return optical signals from the 1D region with return optical signals from adjacent 1D regions using a distributed compressive sensing (DCS) technique.