Abstract:
Selective deposition of a silicon-germanium surface layer on semiconductor surfaces can be employed to provide two types of channel regions for field effect transistors. Anneal of an adjustment oxide material on a stack of a silicon-based gate dielectric and a high dielectric constant (high-k) gate dielectric can be employed to form an interfacial adjustment oxide layer contacting a subset of channel regions. Oxygen deficiency can be induced in portions of the high-k dielectric layer overlying the interfacial adjustment oxide layer by deposition of a first work function metallic material layer and a capping layer and a subsequent anneal. Oxygen deficiency can be selectively removed by physically exposing portions of the high-k dielectric layer. A second work function metallic material layer and a gate conductor layer can be deposited and planarized to form gate electrodes that provide multiple effective work functions.
Abstract:
The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming a high-mobility fin field effect transistor (finFET) fin in a silicon semiconductor on insulator (SOI) substrate by trapping crystalline lattice dislocations that occur during epitaxial growth in a recess formed in a semiconductor layer. The crystalline lattice dislocations may remain trapped below a thin isolation layer, thereby reducing device thickness and the need for high-aspect ratio etching and fin formation.
Abstract:
After removal of the disposable gate structures to form gate cavities in a planarization dielectric layer, a silicon oxide layer is conformally deposited on silicon-oxide-based gate dielectric portions in the gate cavities. A portion of the silicon oxide layer can be nitridated to form a silicon oxynitride layer. A patterned masking material layer can be employed to physically expose a semiconductor surface from a first-type gate cavity. The silicon oxide layer can be removed while preserving an underlying silicon-oxide-based gate dielectric portion in a second-type gate cavity. A stack of a silicon oxynitride layer and an underlying silicon-oxide-based gate dielectric can be protected by a patterned masking material layer in a third-type gate cavity during removal of the silicon oxide layer in the second-type gate cavity. A high dielectric constant gate dielectric layer can be formed in the gate cavities to provide gate dielectrics of different types.
Abstract:
A method of manufacturing multiple finFET devices having different thickness gate oxides. The method may include depositing a first dielectric layer on top of the semiconductor substrate, on top of a first fin, and on top of a second fin; forming a first dummy gate stack; forming a second dummy gate stack; removing the first and second dummy gates selective to the first and second gate oxides; masking a portion of the semiconductor structure comprising the second fin, and removing the first gate oxide from atop the first fin; and depositing a second dielectric layer within the first opening, and within the second opening, the second dielectric layer being located on top of the first fin and adjacent to the exposed sidewalls of the first pair of dielectric spacers, and on top of the second gate oxide and adjacent to the exposed sidewalls of the second pair of dielectric spacers.
Abstract:
A complementary metal oxide semiconductor structure including a scaled 0 and a scaled pFET which do not exhibit an increased threshold voltage and reduced mobility during operation is provided. The method includes forming a plasma nitrided, nFET threshold voltage adjusted high k gate dielectric layer portion within an nFET gate stack, and forming at least a pFET threshold voltage adjusted high k gate dielectric layer portion within a pFET gate stack. The pFET threshold voltage adjusted high k gate dielectric layer portion in the pFET gate stack can also be plasma nitrided. The plasma nitrided, nFET threshold voltage adjusted high k gate dielectric layer portion contains up to 15 atomic % N2 and an nFET threshold voltage adjusted species, while the plasma nitrided, pFET threshold voltage adjusted high k gate dielectric layer portion contains up to 15 atomic % N2 and a pFET threshold voltage adjusted species.
Abstract:
A method of forming a p-type semiconductor device is provided, which in one embodiment employs an aluminum containing threshold voltage shift layer to produce a threshold voltage shift towards the valence band of the p-type semiconductor device. The method of forming the p-type semiconductor device may include forming a gate structure on a substrate, in which the gate structure includes a gate dielectric layer in contact with the substrate, an aluminum containing threshold voltage shift layer present on the gate dielectric layer, and a metal containing layer in contact with at least one of the aluminum containing threshold voltage shift layer and the gate dielectric layer. P-type source and drain regions may be formed in the substrate adjacent to the portion of the substrate on which the gate structure is present. A p-type semiconductor device provided by the above-described method is also provided.
Abstract:
A method of forming a semiconductor device that includes forming a metal gate conductor of a gate structure on a channel portion of a semiconductor substrate. A gate dielectric cap is formed on the metal gate conductor. The gate dielectric cap is a silicon oxide that is catalyzed by a metal element from the gate conductor so that edges of the gate dielectric cap are aligned with a sidewall of the metal gate conductor. Contacts are then formed to at least one of a source region and a drain region that are on opposing sides of the gate structure, wherein the gate dielectric cap obstructs the contacts from contacting the metal gate conductor.
Abstract:
Replacement gate work function material stacks are provided, which provides a work function about the energy level of the conduction band of silicon. After removal of a disposable gate stack, a gate dielectric layer is formed in a gate cavity. A metallic compound layer including a metal and a non-metal element is deposited directly on the gate dielectric layer. At least one barrier layer and a conductive material layer is deposited and planarized to fill the gate cavity. The metallic compound layer includes a material, which provides, in combination with other layer, a work function about 4.4 eV or less, and can include a material selected from tantalum carbide, metallic nitrides, and a hafnium-silicon alloy. Thus, the metallic compound layer can provide a work function that enhances the performance of an n-type field effect transistor employing a silicon channel. Optionally, carbon doping can be introduced in the channel.
Abstract:
Replacement gate work function material stacks are provided, which provides a work function about the energy level of the conduction band of silicon. After removal of a disposable gate stack, a gate dielectric layer is formed in a gate cavity. A metallic compound layer including a metal and a non-metal element is deposited directly on the gate dielectric layer. At least one barrier layer and a conductive material layer is deposited and planarized to fill the gate cavity. The metallic compound layer includes a material having a work function about 4.4 eV or less, and can include a material selected from tantalum carbide and a hafnium-silicon alloy. Thus, the metallic compound layer can provide a work function that enhances the performance of an n-type field effect transistor employing a silicon channel.
Abstract:
A complementary metal oxide semiconductor structure including a scaled nFET and a scaled pFET which do not exhibit an increased threshold voltage and reduced mobility during operation is provided. The method includes forming a plasma nitrided, nFET threshold voltage adjusted high k gate dielectric layer portion within an nFET gate stack, and forming at least a pFET threshold voltage adjusted high k gate dielectric layer portion within a pFET gate stack. The pFET threshold voltage adjusted high k gate dielectric layer portion in the pFET gate stack can also be plasma nitrided. The plasma nitrided, nFET threshold voltage adjusted high k gate dielectric layer portion contains up to 15 atomic % N2 and an nFET threshold voltage adjusted species, while the plasma nitrided, pFET threshold voltage adjusted high k gate dielectric layer portion contains up to 15 atomic % N2 and a pFET threshold voltage adjusted species.