Abstract:
After forming a laterally contacting pair of a semiconductor fin and a conductive strap structure having a base portion vertically contacting a deep trench capacitor embedded in a substrate and a fin portion laterally contacting the semiconductor fin, conducting spikes that are formed on the sidewalls of the deep trench are removed or pushed deeper into the deep trench. Subsequently, a dielectric cap that inhibits epitaxial growth of a semiconductor material thereon is formed over at least a portion of the base portion of the conductive strap structure. The dielectric cap can be formed either over an entirety of the base portion having a stepped structure or on a distal portion of the base portion.
Abstract:
A data readout device is provided and includes a reflective base, reflective sidewalls disposed about the reflective base and an actuation system. The actuation system is configured to modify relative positioning of one of the reflective base and the reflective sidewalls to either reflect incoming radiation back toward an origin thereof or to reflect the incoming radiation away from the origin thereof.
Abstract:
A method includes removing a top portion of a substrate after implantation of a punch through stopper into the substrate; epitaxially growing undoped material on the substrate, thereby forming a channel; filling a top portion of the channel with an intermediate implant forming a vertically bi-modal dopant distribution, with one doping concentration peak in the top portion of the channel and another doping concentration peak in the punch through stopper; and patterning fins into the channel and the punch though stopper to form a finFET structure.
Abstract:
After formation of gate structures over semiconductor fins and prior to formation of raised active regions, a directional ion beam is employed to form a dielectric material portion on end walls of semiconductor fins that are perpendicular to the lengthwise direction of the semiconductor fins. The angle of the directional ion beam is selected to be with a vertical plane including the lengthwise direction of the semiconductor fins, thereby avoiding formation of the dielectric material portion on lengthwise sidewalls of the semiconductor fins. Selective epitaxy of semiconductor material is performed to grow raised active regions from sidewall surfaces of the semiconductor fins. Optionally, horizontal portions of the dielectric material portion may be removed prior to the selective epitaxy process. Further, the dielectric material portion may optionally be removed after the selective epitaxy process.
Abstract:
Semiconductor-oxide-containing gate dielectrics can be formed on surfaces of semiconductor fins prior to formation of a disposable gate structure. A high dielectric constant (high-k) dielectric spacer can be formed to protect each semiconductor-oxide-containing gate dielectric. Formation of the high-k dielectric spacers may be performed after formation of gate cavities by removal of disposable gate structures, or prior to formation of disposable gate structures. The high-k dielectric spacers can be used as protective layers during an anisotropic etch that vertically extends the gate cavity, and can be removed after vertical extension of the gate cavities. A subset of the semiconductor-oxide-containing gate dielectrics can be removed for formation of high-k gate dielectrics for first type devices, while another subset of the semiconductor-oxide-containing gate dielectrics can be employed as gate dielectrics for second type devices. The vertical extension of the gate cavities increases channel widths in the fin field effect transistors.
Abstract:
After forming a laterally contacting pair of a semiconductor fin and a conductive strap structure having a base portion vertically contacting a deep trench capacitor embedded in a substrate and a fin portion laterally contacting the semiconductor fin, conducting spikes that are formed on the sidewalls of the deep trench are removed or pushed deeper into the deep trench. Subsequently, a dielectric cap that inhibits epitaxial growth of a semiconductor material thereon is formed over at least a portion of the base portion of the conductive strap structure. The dielectric cap can be formed either over an entirety of the base portion having a stepped structure or on a distal portion of the base portion.
Abstract:
A semiconductor structure is provided. The semiconductor includes a gate stack on a substrate. The semiconductor includes a first set of sidewall spacers on opposite sidewalls of the gate stack. The semiconductor includes a flowable dielectric layer on the substrate, covering at least a portion of the first set of sidewall spacers. The semiconductor includes a second set of sidewall spacers next to the first set of sidewall spacers covering an upper portion thereof, the second set of sidewall spacers are directly on top of the flowable dielectric layer. The semiconductor includes a contact next to at least one of the second set of sidewall spacers.
Abstract:
Angled directional ion beams are directed to sidewalls of a gate structure that straddles at least one semiconductor fin. The directions of the angled directional ion beams are contained within a vertical plane that is parallel to the sidewalls of the at least one semiconductor. A pair of gate spacers are formed on sidewalls of the gate structure by accumulation of the deposited dielectric material from the angled directional ion beams and without use of an anisotropic etch, while the sidewalls of the semiconductor fins parallel to the directional ion beams remain physically exposed. A selective epitaxy process can be performed to form raised active regions by growing a semiconductor material from the sidewalls of the semiconductor fins.
Abstract:
A first gate structure and a second gate structure are formed over a semiconductor material layer. The first gate structure includes a planar silicon-based gate dielectric, a planar high-k gate dielectric, a metallic nitride portion, and a first semiconductor material portion, and the second gate structure includes a silicon-based dielectric material portion and a second semiconductor material portion. After formation of gate spacers and a planarization dielectric layer, the second gate structure is replaced with a transient gate structure including a chemical oxide portion and a second high-k gate dielectric. A work-function metal layer and a conductive material portion can be formed in each gate electrode by replacement of semiconductor material portions. A gate electrode includes the planar silicon-based gate dielectric, the planar high-k gate dielectric, and a U-shaped high-k gate dielectric, and another gate electrode includes the chemical oxide portion and another U-shaped high-k gate dielectric.
Abstract:
Trench capacitors can be formed between lengthwise sidewalls of semiconductor fins, and source and drain regions of access transistors are formed in the semiconductor fins. A dummy gate structure is formed between end walls of a neighboring pair of semiconductor fins, and limits the lateral extent of raised source and drain regions that are formed by selective epitaxy. The dummy gate structure prevents electrical shorts between neighboring semiconductor fins. Gate spacers can be formed around gate structures and the dummy gate structures. The dummy gate structures can be replaced with dummy replacement gate structures or dielectric material portions, or can remain the same without substitution of any material. The dummy gate structures may consist of at least one dielectric material, or may include electrically floating conductive material portions.