摘要:
A method for providing an oxide layer on a semiconductor substrate is disclosed. In one aspect, the method includes obtaining a semiconductor substrate. The substrate may have a three-dimensional structure, which may comprise at least one hole. The method may also include forming an oxide layer on the substrate, for example, on the three-dimensional structure, by anodizing the substrate in an acidic electrolyte solution.
摘要:
Ultra-low capacitance interconnect structures, preferably Through Silicon Via (TSV) interconnects and methods for fabricating said interconnects are disclosed. The fabrication method comprises the steps of providing a substrate having a first main surface, producing at least one hollow trench-like structure therein from the first main surface, said trench-like structure surrounding an inner pillar structure of substrate material, depositing a dielectric liner which pinches off said hollow trench-like structure at the first main surface such that an airgap is created in the center of hollow trench-like structure and further creating a TSV hole and filling it at least partly with conductive material.
摘要:
The present invention is related to a method for aligning and bonding a first element (1) and a second element (2), comprising: obtaining a first element (1) having at least one protrusion, the protrusion having a base portion (12) made of a first material and an upper portion (13) made of a second, deformable material, different from the first material; obtaining a second element (2) having a first main surface and second main surface (8) and at least one through-hole between the first and second main surface; placing the first and second element onto each other; receiving in the through-hole of the second element (2) the protrusion of the first element (1), the protrusion being arranged and constructed so as to extend from an opening of the through-hole in the first main surface to a position beyond an opening of the through-hole in the second main surface (8); deforming the deformable portion (13) of the protrusion, such that the deformed portion mechanically fixes the second element (2) on the first element (1).
摘要:
A method for detecting embedded voids present in a structure formed in or on a semiconductor substrate is described. The method includes performing a processing step P1 for forming the structure; measuring the mass M1 of the substrate; performing thermal treatment; measuring the mass M2 of the substrate; calculating the mass difference between the mass of the substrate measured before and after the performed thermal treatment; and deducing the presence of embedded voids in the structure by comparing the mass difference with a pre-determined value.
摘要:
A method is provided for forming at least one TSV interconnect structure surrounded by at least one isolating trench-like structure having at least one airgap. The method comprises at least the steps of providing a substrate having a first main surface and producing simultaneous at least one a TSV hole and a trench-like structure surrounding the TSV hole and separated by remaining substrate material. The method also comprises thereafter depositing a dielectric liner in order to smoothen the sidewalls of the etched TSV hole and to pinch-off the opening of the trench-like structure at the first main surface of the substrate in order to create at least one airgap in said trench-like structure and depositing a conductive material in said TSV hole in order to create a TSV interconnect. A corresponding substrate is also provided.
摘要:
A method of fabricating through substrate vias is disclosed. In one aspect, vias are etched from the backside of the substrate down to shallow trench isolation (STI) or the pre-metal dielectric stack (PMD). Extra contacts between metal 1 contact pads and the through-wafer vias are fabricated for realizing the contact between the through wafer vias and the back-end-of-line of the semiconductor chips.
摘要:
One inventive aspect is related to a method of bonding two elements and micro-electronic devices produced according to such methods. In one aspect, a micro-electronic device includes a first and a second element, bonded together by a joining structure. The joining structure has a first micropattern portion, a second micropattern portion, and a joining portion in between the first and second micropattern portions. The first and second micropattern portions are made of cobalt. The joining portion includes intermetallic compounds of cobalt and tin (Sn).
摘要:
A method is disclosed for bonding two elements by means of a bonding agent such as a glue layer, wherein the bonding agent is removable, and wherein between the bonding agent and at least one element, a sacrificial layer is applied which is selectively removable with respect to that element. According to embodiments, the elements comprise a die or a substrate bonded to a carrier wafer. The nature and type of the die or substrate and of the carrier can vary within the scope of embodiments of the invention. Also disclosed is a composite substrate obtainable by methods of the invention.
摘要:
In the present disclosure a device for sensing and/or actuation purposes is presented in which microstructures (20) comprising shafts (2) with different functionality and dimensions can be inserted in a modular way. That way, out-of-plane connectivity, mechanical clamping between the microstructures (20) and a substrate (1) of the device, and electrical connection between electrodes (5) on the microstructures (20) and the substrate (1) can be realized. Connections to external circuitry can be realised. Microfluidic channels (10) in the microstructures (20) can be connected to external equipment. A method to fabricate and assemble the device is provided.
摘要:
The present invention is related to a method for singulating chips from a stack of layers, such as the layers on a wafer or substrate. The stack of layers includes a front end of line (FEOL) layer upon the substrate layer, with the substrate layer having a first surface and a second surface. The FEOL is positioned on top of the first surface, and a back end of line (BEOL) layer is positioned on top of the FEOL. The method includes etching singulating trenches through the BEOL, through the FEOL and at least partially through the substrate layer, depositing a passivation layer on the stack provided with singulating trenches, whereby the sidewalls of the etched singulating trenches are at least partially passivated. Dicing, such as blade dicing, laser dicing or trench etch dicing is performed, releasing the chip from the stack of layers.