Abstract:
A tunable upper plasma exclusion zone (PEZ) ring adjusts a distance of plasma during processing in a processing chamber and includes: a lower surface that includes: a horizontal portion; and an upwardly tapered outer portion that is conical and that extends outwardly and upwardly from the horizontal portion at an upward taper angle of about 5° to 50° with respect to the horizontal portion, where an outer diameter of the upwardly tapered outer portion is greater than 300 millimeters (mm), and where an inner diameter where the upwardly tapered outer portion begins to extend upwardly is less than 300 mm. A controller is to, during processing of a 300 mm circular substrate, adjust the distance of plasma for treatment of the 300 mm circular substrate at least one of radially inward and radially outward using the tunable upper PEZ ring.
Abstract:
Apparatus and methods for depositing and treating or etching a film are described. A batch processing chamber includes a plurality of processing regions with at least one plasma processing region. A low frequency bias generator is connected to a susceptor assembly to intermittently apply a low frequency bias to perform a directional treatment or etching the deposited film.
Abstract:
An apparatus for manufacturing a display device and a method of manufacturing a display device is disclosed. In one aspect, the apparatus includes a guider configured to guide a substrate on which a display portion is formed, a plasma sprayer configured to be spaced apart from the display portion and configured to spray plasma onto the substrate and a mask configured to be arranged over the substrate and cover the display portion. The mask includes a body portion configured to face the display portion and a protrusion portion formed at an end of the body portion and configured to extend towards the substrate.
Abstract:
A method for transporting a substrate using an end effector which mechanically clamps a periphery of the substrate includes: before transporting the substrate, depositing a compressive film only on, at, or in a bevel portion of the substrate; and transporting the substrate whose bevel portion is covered by the compressive film as the outermost film, using an end effector while mechanically clamping the periphery of the substrate.
Abstract:
A plasma processing system having at least a plasma processing chamber for performing plasma processing of a substrate and utilizing at least a first processing state and a second processing state. Plasma is present above the center region of the substrate during the first processing stale to perform plasma processing of at least the center region during the first processing state. Plasma is absent above the center region of the substrate but present adjacent to the bevel edge region during the second processing state to at least perform plasma processing of the bevel edge region during the second processing state. During the second processing state, the upper electrode is in an RF floating state and the substrate is disposed on the lower electrode surface.
Abstract:
A process chamber includes a wafer support to mount a wafer to be processed in the process chamber, with the wafer having an annular edge exclusion area. A first electrically grounded ring extends in an annular path radially outward of the edge exclusion area and is electrically isolated from the wafer support. A second electrode is configured with a center area opposite to the wafer support. A second electrically grounded ring extends in an annular path radially outward of the second electrode and the edge exclusion area. The second electrically grounded ring is electrically isolated from the center area. An annular mount section has a DC bias ring, and the DC bias ring opposes the edge exclusion area when the wafer is present. A DC control circuit is provided for applying a DC voltage to the DC bias ring.
Abstract:
Systems and methods for edge exclusion control are described. One of the systems includes a plasma chamber. The plasma processing chamber includes a lower electrode having a surface for supporting a substrate. The lower electrode is coupled with a radio frequency (RF) power supply. The plasma processing chamber further includes an upper electrode disposed over the lower electrode. The upper electrode is electrically grounded. The plasma processing chamber includes an upper dielectric ring surrounding the upper electrode. The upper dielectric ring is moved using a mechanism for setting a vertical position of the upper dielectric ring separate from a position of the upper electrode. The system further includes an upper electrode extension surrounding the upper dielectric ring. The upper electrode extension is electrically grounded. The system also includes a lower electrode extension surrounding the lower dielectric ring. The lower electrode extension is arranged opposite the upper electrode extension.
Abstract:
Chambers for processing a bevel edge of a substrate are provided. One such chamber includes a bottom electrode defined to support a substrate in the chamber. The bottom electrode has a bottom first level for supporting the substrate and a bottom second level near an outer edge of bottom electrode. The bottom second level is defined at a step below the bottom first level. Further included is a top electrode oriented above the bottom electrode. The top electrode having a top first level and a top second level, where the top first level is opposite the bottom first level and the top second level is opposite the bottom second level. The top second level is defined at a step above the top first level. A bottom ring mount oriented at the bottom second level is included. The bottom ring mount includes a first adjuster for moving a bottom permanent magnet toward and away from the top electrode. Further included is a top ring mount oriented at the top second level. The top ring mount includes a second adjuster for moving a top permanent magnet toward and away from the bottom electrode.
Abstract:
There is provided a processing apparatus including a processing gas discharge unit provided within a processing chamber so as to face a mounting table and configured to discharge a processing gas into the processing chamber; a first space corresponding to a central portion of a processing target object; a second space corresponding to an edge portion of the processing target object; at least one third space formed between the first space and the second space; and a processing gas distribution unit including processing gas distribution pipes and valves. The spaces are provided within the processing gas discharge unit and partitioned by partition walls. At the spaces, there are formed discharge holes for discharging the processing gas. The processing gas distribution pipes communicate with the spaces, and the valves are opened or closed to allow adjacent processing gas distribution pipes to communicate with each other or be isolated from each other.