摘要:
Embodiments for processing a substrate in a pulsed plasma chamber are provided. A processing apparatus with two chambers, separated by a plate fluidly connecting the chambers, includes a continuous wave (CW) controller, a pulse controller, and a system controller. The CW controller sets the voltage and the frequency for a first radio frequency (RF) power source coupled to a top electrode. The pulse controller is operable to set voltage, frequency, ON-period duration, and OFF-period duration for a pulsed RF signal generated by a second RF power source coupled to the bottom electrode. The system controller is operable to regulate the flow of species between the chambers to assist in the negative-ion etching, to neutralize excessive positive charge on the wafer surface during afterglow in the OFF-period, and to assist in the re-striking of the bottom plasma during the ON -period.
摘要:
Methods, systems, apparatuses, and computer programs are presented for controlling etch rate and plasma uniformity using magnetic fields. A semiconductor substrate processing apparatus includes a vacuum chamber including a processing zone for processing a substrate using capacitively coupled plasma (CCP). The apparatus further includes a magnetic field sensor configured to detect a signal representing a residual magnetic field associated with the vacuum chamber. At least one magnetic field source is configured to generate one or more supplemental magnetic fields through the processing zone of the vacuum chamber. A magnetic field controller is coupled to the magnetic field sensor and the at least one magnetic field source. The magnetic field controller is configured to adjust at least one characteristic of the one or more supplemental magnetic fields, causing the one or more supplemental magnetic fields to reduce the residual magnetic field to a pre-determined value.
摘要:
Gas distribution faceplates are disclosed that feature clusters of gas passages extending from inlet gas ports on a first side thereof to outlet gas ports on a second side thereof. The gas passages may each have at least a portion thereof that is at an oblique angle with respect to a nominal centerline of the gas distribution faceplate, thereby allowing the inlet gas ports for a given cluster of gas passages to be tightly grouped together and the outlet gas ports for that cluster of gas passages to be more widely spaced apart. This allows for a large numbers of gas passages to be used, thereby allowing for a reduction of flow rate through each gas passage and an attendant decrease in gas passage erosion rate, while reducing or eliminating the effects of overlapping wear zones around each outlet gas port.
摘要:
Computer-implemented methods of optimizing a process simulation model that predicts a result of a semiconductor device fabrication operation to process parameter values characterizing the semiconductor device fabrication operation are disclosed. The methods involve generating cost values using a computationally predicted result of the semiconductor device fabrication operation and a metrology result produced, at least in part, by performing the semiconductor device fabrication operation in a reaction chamber operating under a set of fixed process parameter values. The determination of the parameters of the process simulation model may employ pre-process profiles, via optimization of the resultant post-process profiles of the parameters against profile metrology results. Cost values for, e.g., optical scatterometry, scanning electron microscopy and transmission electron microscopy may be used to guide optimization.
摘要:
A system and method of identifying a selected process point in a multi-mode pulsing process includes applying a multi-mode pulsing process to a selected wafer in a plasma process chamber, the multi-mode pulsing process including multiple cycles, each one of the cycles including at least one of multiple, different phases. At least one process output variable is collected for a selected at least one of the phases, during multiple cycles for the selected wafer. An envelope and/or a template of the collected at least one process output variable can be used to identify the selected process point. A first trajectory for the collected process output variable of a previous phase can be compared to a second trajectory of the process output variable of the selected phase. A multivariate analysis statistic of the second trajectory can be calculated and used to identify the selected process point.
摘要:
Disclosed are methods of optimizing a computer model which relates the etch profile of a feature on a semiconductor substrate to a set of independent input parameters (A), via the use of a plurality of model parameters (B). In some embodiments, the methods may include modifying one or more values of B so as to reduce a metric indicative of the differences between computed reflectance spectra generated from the model and corresponding experimental reflectance spectra with respect to one or more sets of values of A. In some embodiments, calculating the metric may include an operation of projecting the computed and corresponding experimental reflectance spectra onto a reduced-dimensional subspace and calculating the difference between the reflectance spectra as projected onto the subspace. Also disclosed are etch systems implementing such optimized computer models.
摘要:
Systems and methods for processing a semiconductor wafer includes a plasma processing chamber. The plasma processing chamber includes an exterior, an interior region with a wafer receiving mechanism and a viewport disposed on a sidewall of the plasma processing chamber providing visual access from the exterior to the wafer received on the wafer receiving mechanism. A camera is mounted to the viewport of the plasma processing chamber on the exterior and coupled to an image processor. The image processor includes pattern recognition logic to match images of emerging pattern captured and transmitted by the camera, to a reference pattern and to generate signal defining an endpoint when a match is detected. A system process controller coupled to the image processor and the plasma processing chamber receives the signal from the image processor and adjusts controls of one or more resources to stop the etching operation.
摘要:
A system includes memory that stores compensation information that associates process setpoint temperatures with respective adjustment values. The respective adjustment values include a first adjustment value corresponding to a first temperature compensation scheme and at least one second adjustment value corresponding to a second compensation scheme. A temperature compensation module receives a first process setpoint temperature, retrieves the compensation information from the memory based on the received first process setpoint temperature, calculates a first compensated temperature based on the received first process setpoint temperature, the first adjustment value, and the second adjustment value, and controls a temperature of a component of a substrate processing system according to the first compensated temperature.
摘要:
Disclosed are methods of optimizing a computer model which relates the etch profile of a feature on a semiconductor substrate to a set of independent input parameters (A), via the use of a plurality of model parameters (B). In some embodiments, the methods may include modifying one or more values of B so as to reduce a metric indicative of the differences between computed reflectance spectra generated from the model and corresponding experimental reflectance spectra with respect to one or more sets of values of A. In some embodiments, calculating the metric may include an operation of projecting the computed and corresponding experimental reflectance spectra onto a reduced-dimensional subspace and calculating the difference between the reflectance spectra as projected onto the subspace. Also disclosed are etch systems implementing such optimized computer models.
摘要:
A system for controlling a condition of a wafer processing chamber is disclosed. According the principles of the present disclosure, the system includes memory and a first controller. The memory stores a plurality of profiles of respective ones of a plurality of first control elements. The plurality of first control elements are arranged throughout the chamber. The first controller determines non-uniformities in a substrate processing parameter associated with the plurality of first control elements. The substrate processing parameter is different than the condition of the chamber. The first controller adjusts at least one of the plurality of profiles based on the non-uniformities in the substrate processing parameter and a sensitivity of the substrate processing parameter to the condition.