Abstract:
A system for controlling of wafer bow in plasma processing stations is described. The system includes a circuit that provides a low frequency RF signal and another circuit that provides a high frequency RF signal. The system includes an output circuit and the stations. The output circuit combines the low frequency RF signal and the high frequency RF signal to generate a plurality of combined RF signals for the stations. Amount of low frequency power delivered to one of the stations depends on wafer bow, such as non-flatness of a wafer. A bowed wafer decreases low frequency power delivered to the station in a multi-station chamber with a common RF source. A shunt inductor is coupled in parallel to each of the stations to increase an amount of current to the station with a bowed wafer. Hence, station power becomes less sensitive to wafer bow to minimize wafer bowing.
Abstract:
A tunable upper plasma exclusion zone (PEZ) ring adjusts a distance of plasma during processing in a processing chamber and includes: a lower surface that includes: a horizontal portion; and an upwardly tapered outer portion that is conical and that extends outwardly and upwardly from the horizontal portion at an upward taper angle of about 5° to 50° with respect to the horizontal portion, where an outer diameter of the upwardly tapered outer portion is greater than 300 millimeters (mm), and where an inner diameter where the upwardly tapered outer portion begins to extend upwardly is less than 300 mm. A controller is to, during processing of a 300 mm circular substrate, adjust the distance of plasma for treatment of the 300 mm circular substrate at least one of radially inward and radially outward using the tunable upper PEZ ring.
Abstract:
In a plasma processing apparatus, a controller controls one or both of a first high frequency power supply and a second high frequency power supply to periodically stop the supply of one or both of the first high frequency power and the second high frequency power. The controller also controls a switching unit to apply a DC voltage to a focus ring from a first time after a predetermined period of time in which a self-bias voltage of a lower electrode is decreased from a start point of each period in which one or both of the first high frequency power and the second high frequency power are supplied and to stop the application of the DC voltage to the focus ring during each period in which the supply of one or both of the first high frequency power and the second high frequency power is stopped.
Abstract:
A plasma processing system having at least a plasma processing chamber for performing plasma processing of a substrate and utilizing at least a first processing state and a second processing state. Plasma is present above the center region of the substrate during the first processing stale to perform plasma processing of at least the center region during the first processing state. Plasma is absent above the center region of the substrate but present adjacent to the bevel edge region during the second processing state to at least perform plasma processing of the bevel edge region during the second processing state. During the second processing state, the upper electrode is in an RF floating state and the substrate is disposed on the lower electrode surface.
Abstract:
A process chamber includes a wafer support to mount a wafer to be processed in the process chamber, with the wafer having an annular edge exclusion area. A first electrically grounded ring extends in an annular path radially outward of the edge exclusion area and is electrically isolated from the wafer support. A second electrode is configured with a center area opposite to the wafer support. A second electrically grounded ring extends in an annular path radially outward of the second electrode and the edge exclusion area. The second electrically grounded ring is electrically isolated from the center area. An annular mount section has a DC bias ring, and the DC bias ring opposes the edge exclusion area when the wafer is present. A DC control circuit is provided for applying a DC voltage to the DC bias ring.
Abstract:
A bevel etcher for cleaning a bevel edge of a semiconductor substrate with plasma includes a lower electrode assembly having a lower support having a cylindrical top portion. An upper dielectric component is disposed above the lower electrode assembly having a cylindrical bottom portion opposing the top portion of the lower support. A tunable upper plasma exclusion zone (PEZ) ring surrounds the bottom portion of the dielectric component, wherein a lower surface of the tunable upper PEZ ring includes an upwardly tapered outer portion extending outwardly from the bottom portion of the upper dielectric component, wherein a vertical height of an adjustable gap between the lower surface of the upper PEZ ring and an upper surface of a substrate supported on the lower support can be increased or decreased such that the extent of the bevel edge of the substrate to be cleaned by the plasma can respectively be adjusted radially inward or radially outward. At least one radio frequency (RF) power source is adapted to energize process gas into the plasma during a bevel edge cleaning process.
Abstract:
A process chamber includes a wafer support to mount a wafer to be processed in the process chamber, with the wafer having an annular edge exclusion area. A first electrically grounded ring extends in an annular path radially outward of the edge exclusion area and is electrically isolated from the wafer support. A second electrode is configured with a center area opposite to the wafer support. A second electrically grounded ring extends in an annular path radially outward of the second electrode and the edge exclusion area. The second electrically grounded ring is electrically isolated from the center area. An annular mount section has a DC bias ring, and the DC bias ring opposes the edge exclusion area when the wafer is present. A DC control circuit is provided for applying a DC voltage to the DC bias ring.
Abstract:
A process chamber includes a wafer support to mount a wafer to be processed in the process chamber, with the wafer having an annular edge exclusion area. A first electrically grounded ring extends in an annular path radially outward of the edge exclusion area and is electrically isolated from the wafer support. A second electrode is configured with a center area opposite to the wafer support. A second electrically grounded ring extends in an annular path radially outward of the second electrode and the edge exclusion area. The second electrically grounded ring is electrically isolated from the center area. An annular mount section has a DC bias ring, and the DC bias ring opposes the edge exclusion area when the wafer is present. A DC control circuit is provided for applying a DC voltage to the DC bias ring.
Abstract:
The present invention provides methods and apparatuses for removing unwanted film from the edge area of substrate using remotely-generated plasmas. Activated plasma species are directed to the edge of the substrate to contact and remove the unwanted film, while intrusion of the activated species to areas above the active circuit region (where the film is desired) is suppressed. In certain embodiments, intrusion of the activated species is suppressed by the use of a purge gas and/or the use of materials that promote recombination of plasma species. In particular embodiments, atomic oxygen is used to remove ashable films from the edge of semiconductor wafers.
Abstract:
An ion generator includes an arc chamber defining a plasma generation space, and a cathode which emits thermoelectrons toward the plasma generation space. The arc chamber includes a box-shaped main body having an opening, and a slit member mounted to cover the opening and provided with a front slit. An inner surface of the main body is exposed to the plasma generation space made of a refractory metal material. The slit member includes an inner member made of graphite and an outer member made of another refractory metal material. The outer member includes an outer surface exposed to an outside of the arc chamber. The inner member includes an inner surface exposed to the plasma generation space, and an opening portion which forms the front slit extending from the inner surface of the inner member to the outer surface of the outer member.