Abstract:
The present disclosure provides a substrate support assembly includes a substrate pedestal having an upper surface for receiving and supporting a substrate, a cover plate disposed on the substrate support pedestal, and two or more lift pins movably disposed through the substrate support pedestal and the cover plate. The cover plate includes a disk body having a central opening. The two or more lift pins are self supportive. Each of the two or more lift pins comprises one or more contact pads, and the contact pads of the lift pins extend into to the central opening of the cover plate to receive and support a substrate at an edge region of the substrate.
Abstract:
Efficient integrated sequential deposition of alternating layers of dielectric and conductor, for example oxide/metal or metal nitride, e.g., SiO2/TiN, in a single tool, and even in a single process chamber enhances throughput without compromising quality when directly depositing a OMOM stack with many layers. Conductor and dielectric film deposition of a stack of at least 20 conductor/dielectric film pairs in the same processing tool or chamber, without breaking vacuum between the film depositions, such that there is no substantial cross-contamination between the conductor and dielectric film depositions, can be achieved.
Abstract:
A substrate processing apparatus includes a chamber in which a first processing space, a second processing space, a connecting space connecting the first processing space and the second processing space, a first hole connecting with the connecting space and a second hole connecting with the connecting space are formed, a first gate valve having a first valve element and closing the first hole, the first valve element sliding in the first hole, opening and closing the connecting space, and a second gate valve having a second valve element and closing the second hole, the second valve element sliding in the second hole, opening and closing the connecting space, wherein a region in which the first hole and the connecting space connect with each other and a region in which the second hole and the connecting space connect with each other are one common region.
Abstract:
Disclosed are an apparatus and a method for saving energy while increasing the conveying speed in vacuum coating plants consisting of a series of sputtering segments (3) and gas separation segments (2) along with a continuous substrate plane (1). Said apparatus has the following features: a) each of the sputtering segments (3) consists of a tank tub (12) inside which a conveying device (11) is located; the flange (6) of the tank is positioned in the immediate vicinity above the substrate plane (1); a cathode bearing block (5), along with targets (8) and gas inlet ducts (10), is located in the tank cover (4) in the immediate vicinity of the substrate together with splash guards (9); b) in the region of the substrate plane (1), the gas separation segments (2) are provided with a tunnel cover (14) that extends along the entire length of the gas separation segment (2); c) sputtering segments (3) and/or gas separation segments (2) are evacuated using one or more vacuum pumps (15), and the air pumped in said process is trapped in an air reservoir (25) having an adjustable volume.
Abstract:
A technique for performing high-temperature substrate processing includes a plurality of chambers where substrates are processed, wherein the chambers are disposed adjacent to one another; a gas supply unit configured to alternately supply first and second gasses to each of the chambers; a first exhaust pipe installed in each of the chambers and configured to exhaust the first and second gasses; a first heater installed at the first exhaust pipe and configured to heat the first exhaust pipe to a temperature higher than a temperature whereat a source of the first gas is vaporized under vapor pressure; an electronic box installed at each of the chambers, wherein the electronic box is disposed adjacent to a gas box accommodating a portion of the first exhaust pipe; and a thermal reduction structure surrounding the first exhaust pipe and configured to reduce heat from the first heater being conducted to the electronic box.
Abstract:
Provided is a plasma processing apparatus including: a rotary mounting table supported by a rotatory shaft arranged rotatably within a processing chamber and including multiple substrate placement units arranged side by side in a circumferential direction; a processing gas supplying section for supplying processing gas into the processing chamber; a plasma generating section wherein multiple microwave introducing mechanisms, each provided on the ceiling of the processing chamber so as to face the rotary mounting table and used for generating a plasma of the processing gas, are arranged in multiple rows spaced apart from each other from the inside of the movement path of the substrates when the rotary mounting table is rotated to the outside, each row of microwave introducing mechanisms being formed by arranging the microwave introducing mechanisms annularly side by side along the circumferential direction; and an exhaust unit that evacuates an inside of the processing chamber.
Abstract:
Provided is a substrate dechucking system of a plasma processing chamber adapted to remove a substrate from an ESC with reduction in voltage potential spike during dechucking of the substrate.
Abstract:
A plasma dicing apparatus in which a semiconductor wafer with a protective sheet stuck thereonto covering the entire circuit-forming surface and with an etching-resistant mask member stuck on the back surface opposite to the circuit-forming surface is mounted on a mounting stage; plasma etching is performed using the mask member as a mask; and the semiconductor wafer is diced into plural semiconductor chips. The plasma dicing apparatus includes a ring-shaped frame member retaining the outer circumference of the mask member extending off the outer circumference of the semiconductor wafer. The mounting stage is composed of a wafer supporting part supporting a semiconductor wafer and a frame member supporting part supporting the frame member. This facilitates carrying a semiconductor wafer into and out of the vacuum chamber.
Abstract:
The invention provides a plasma processing method capable of reducing particle caused by flinging up of particles by airflow due to the pressure fluctuation in the processing chamber during the time the sample is carried into the processing chamber, subjected to plasma processing and carried out of the processing chamber. The invention provides a plasma processing method using a plasma processing apparatus comprising multiple plasma processing chambers for processing samples, a transfer chamber connected to the processing chambers for transferring samples, and a supply system for supplying gas which is the same gas as a transferring gas supplied to the transfer chamber to both the processing chambers and transfer chamber or to only the processing chambers, wherein the process comprises (b) a step of transferring the sample into the processing chamber with the transferring gas supplied to the processing chamber; (c) thereafter, generating plasma from the transferring gas supplied to the processing chamber while maintaining the supply of transferring gas to the processing chamber; (d) a step of switching the gas supplied to the processing chamber from transferring gas to processing gas while maintaining plasma by supplying processing gas continuously to the processing chamber; and (e) a step of subjecting the sample to plasma processing.
Abstract:
A substrate damage prevention system and method for a plasma treating apparatus are provided. The system may include a lower electrode on which a substrate may be mounted, an inert gas supply unit which may supply an inert gas to an upper surface of the lower electrode on which the substrate is mounted, and an air supply unit which may supply air to the upper surface of the lower electrode. An inert gas may be supplied between the lower electrode and the substrate in order to control the temperature of the substrate during the chucking. Air may be supplied between the lower electrode and the substrate during dechucking in order to allow the substrate to be easily separated from the lower electrode.