Abstract:
Systems, methods, and devices for encoding and decoding data packets for transmission across a data network. To encode, data packets are first subjected to a an outer code process to result in outer coded packets. The outer coded packets are then divided into generations or groups of outer coded packets, each group or generation having an equal number of packets. Output packets are then created by forming random linear combinations of the outer coded packets from a specific generation or group of outer coded packets. The coefficients for the various elements of each linear combination is selected from a Galois field of values. To decode the incoming packets, enough packets are received until an iterative decoding process can be initiated.
Abstract:
The present disclosure provides methods and apparatus for dynamically adjusting the common mode voltage at the LC tank node and/or the power supply voltage of a VCO with an LC resonator in order to force oscillation start-up by temporarily increasing gain. Methods according to certain preferred embodiments may reduce power consumption and/or overcome threshold voltage limitations and/or increase frequency and frequency tuning range during normal (steady-state) operation.
Abstract:
Representative implementations of devices and techniques provide calibration for a spread spectrum PLL device modulator. A first calibration loop includes a cross correlator to correlate a sequence of random or pseudo-random signals injected into a signal path of the PLL device to a phase error signal of the PLL device. A second calibration loop includes a bandwidth tuner to tune a bandwidth of the PLL device and to reduce a jitter of the PLL device.
Abstract:
Methods, systems, and circuits for providing compensation for voltage variation are disclosed. A system includes: a voltage comparator configured to assert a control signal in response to detecting that one or more of power supply voltages droops below a threshold amount; a phase locked loop (PLL) configured to divide an output frequency for the PLL in response to the assertion of the control signal; a plurality of voltage sensors corresponding to the plurality of power supply voltages, the voltage sensors configured to output respective digital signals indicative of a voltage level of its corresponding power supply voltage; and a control circuit configured to control an oscillator frequency in the PLL during the open-loop mode responsive to the respective digital signals.
Abstract:
A method for correcting long-term phase drift of a crystal oscillator in a numerically-controlled oscillator is described. The method includes determining the phase error in an oscillator signal in comparison with an external time base; delta-sigma modulating the phase error to generate a delta-sigma error bitstream; conditionally adding or subtracting an error correction step size from a phase increment value in each clock cycle based on the delta-sigma error bitstream, to create a modulated phase increment value; and adding the modulated phase increment value to a phase accumulator to generate an error-corrected output digital signal. The delta-sigma-based error correction method avoids the use of multipliers. The same delta-sigma error signal can be used in multiple numerically-controlled oscillators configured to different output frequency if driven by the same reference oscillator.
Abstract:
The current-feedback operational amplifier-based sinusoidal oscillator circuit includes a pair of CFOAs connected to each other using five resistors and two capacitors. The condition and the frequency of oscillation are fully coupled, and thus none of them can be controlled without disturbing the other. The oscillator circuit provides a high impedance output current and two low impedance output voltages.
Abstract:
In order to reduce the possibility of erroneous switching of an operation mode, an oscillation circuit, an oscillator, an electronic device and a moving object including: a power source detecting section that detects a power supply state; a determining section that determines an input state of a predetermined signal; and a control section that switches a operation mode when the determining section determines that input of the predetermined signal is detected within a predetermined time after it is detected that power is supplied, and a control method of the oscillator are provided.
Abstract:
Oscillator regulation circuitry is provided for regulating a frequency of an output signal generated by an oscillator. Oscillator regulation circuitry has frequency sensing circuitry for sensing the frequency of the output signal and generating a first signal depending on the frequency, and control circuitry which generates the oscillator control signal based on the comparison between the first signal and a non-oscillating reference signal. The frequency sensing circuitry includes at least one switched capacitor. This approach provides improved noise reduction, less sensitivity to process, temperature and voltage variations, and a more linear scaling of the frequency with the reference signal, compared to previous techniques.
Abstract:
A clock signal generation circuit configured to generate the clock signal having a frequency that is maintained across variations in a number of operating conditions, such as changes in supply voltage, temperature and processing time. In an embodiment, the frequency spread of the generated clock signal of a PVT-compensated CMOS ring oscillator is configured to compensate for variations in the supply voltage, as well as for variations in process and temperature via a process and temperature compensation circuit. The PVT-compensated CMOS ring oscillator includes a regulated voltage supply circuit to generate a supply voltage that is resistant to variations due to changes in the overall supply voltage.
Abstract:
Circuitry for generating a compliance voltage (V+) for the current sources and/or sinks in an implantable stimulator device in disclosed. The circuitry assesses whether V+ is optimal for a given pulse, and if not, adjusts V+ for the next pulse. The circuitry uses amplifiers to measure the voltage drop across active PDACs (current sources) and NDAC (current sinks) at an appropriate time during the pulse. The measured voltages are assessed to determine whether they are high or low relative to optimal values. If low, a V+ regulator is controlled to increase V+ for the next pulse; if not, the V+ regulator is controlled to decrease V+ for the next pulse. Through this approach, gradual changes that may be occurring in the implant environment can be accounted for, with V+ adjusted on a pulse-by-pulse basis to keep the voltage drops at or near optimal levels for efficient DAC operation.