Abstract:
A clock recovery circuit includes a frequency tracking loop including a first charge pump, and a phase tracking loop including a second charge pump. A voltage-controlled oscillator responds to the frequency tracking loop in a first operating mode and to the phase tracking loop in a second operating mode. A lock detector outputs an activation signal that indicates whether the clock recovery circuit has acquired frequency lock. A loop filter coupled to an input of the voltage-controlled oscillator includes a switchable resistor and a programmable delay element responsive to the activation signal. The first charge pump is disabled when the activation signal indicates frequency lock has been acquired, and disabled when the activation signal indicates frequency lock has not been acquired. The switchable resistor is bypassed when an output of the programmable delay element is in the first signaling state.
Abstract:
An oscillator and a clock circuit are disclosed. In an oscillator (100), a tail inductor connected to a cross-coupled transistor includes at least two inductors connected in parallel. Therefore, an inductance of the tail inductor is less than an inductance of any one of the inductors. This can address a design difficulty that a tail inductor with a smaller inductance needs to be used as an operating frequency of a VCO increases. The oscillator (100) includes a first cross-coupled transistor (121) and a first tail inductor (111). The first tail inductor (111) includes at least two inductors connected in parallel. The first tail inductor (111) is coupled to a source of the first cross-coupled transistor (121). The source of the first cross-coupled transistor (121) is coupled to a power supply or a ground through the first tail inductor (111).
Abstract:
In described examples, a phase measurement circuit includes a first switch coupled between a power terminal and a phase measurement output, the first switch having a first switch control terminal coupled to an up input. The phase measurement circuit includes a second switch coupled between the phase measurement output, the second switch having a second switch control terminal coupled to a down input. The phase measurement circuit includes a first capacitor coupled between the power terminal and the phase measurement output, a second capacitor coupled between the phase measurement output and a ground terminal, and a charge pump circuit having a first control input, a second control input, and a charge pump output, the first control input coupled to the up input, the second control input coupled to the down input, and the charge pump output coupled to the phase measurement output.
Abstract:
Certain aspects of the present disclosure support a method and apparatus for foreground and background bandwidth calibration in a frequency-do-digital converter based phase-locked loop (FDC-PLL) device.
Abstract:
According to one embodiment, a voltage-controlled oscillation (VCO) circuit includes a current source, an oscillation core unit, an amplitude detection unit, a current control unit, a low pass filter, and a switch. The current source supplies a bias current to the oscillation core unit in accordance with a current control signal. The oscillation core unit oscillates according to the bias current and outputs an oscillation signal. The amplitude detection unit outputs a detection voltage according to an amplitude of the oscillation signal. The current control unit outputs a control signal so that the detection voltage is equal to a reference voltage. The low pass filter generates the current control signal by filtering the control signal, and then supplies the current control signal to the current source. The switch is connected in parallel with the low pass filter.
Abstract:
Apparatus and methods for tuning a voltage controlled oscillator (VCO) are provided. In one aspect, a method of auto-tuning in a phase-locked loop includes generating a VCO clock signal using a VCO coupled to a capacitor array, dividing the VCO clock signal to generate a divided clock signal using a prescaler circuit having a selectable division ratio, controlling a value of the selectable division ratio using a first counter and a second counter of a counter module, generating a phase-frequency detector feedback signal based on a division control signal M and the divided clock signal using the counter module, counting a number of cycles of the divided clock signal that occur during a calibration interval using a cycle counter of a digital processing logic circuit, and determining the value of a capacitor array control signal based on the number of cycles counted during the calibration interval.
Abstract:
Apparatus and methods for tuning a voltage controlled oscillator (VCO) are provided. In one aspect, a method of auto-tuning in a phase-locked loop includes generating a VCO clock signal using a VCO coupled to a capacitor array, dividing the VCO clock signal to generate a divided clock signal using a prescaler circuit having a selectable division ratio, controlling a value of the selectable division ratio using a first counter and a second counter of a counter module, generating a phase-frequency detector feedback signal based on a division control signal M and the divided clock signal using the counter module, counting a number of cycles of the divided clock signal that occur during a calibration interval using a cycle counter of a digital processing logic circuit, and determining the value of a capacitor array control signal based on the number of cycles counted during the calibration interval.
Abstract:
Provided is a PLL circuit including automatic frequency control circuit and an operating method thereof. The voltage controlled oscillator is primarily controlled by an automatic frequency control circuit, and is secondarily controlled by a loop filter. The voltage controlled oscillator outputs a coarsely-tuned oscillation signal when primarily controlled, and outputs a finely-tuned oscillation signal when secondarily controlled. The PLL circuit can have a quick frequency fixing time, and output the oscillation signal having a broad and stable frequency. Moreover, the noise characteristic of the PLL circuit is enhanced.
Abstract:
A signal routing apparatus comprises a register bank to store a set of data signals. A delay locked loop generates a set of phase displaced clock signals. A phase controlled read circuit sequentially routes the set of data signals from the register bank in response to the phase displaced clock signals. A Low Voltage Differential Signaling buffer connected to the phase controlled read circuit transmits the data signals in a Low Voltage Differential Signaling mode. The phase displaced clock signals operate in lieu of a higher clock rate in order to reduce power consumption.
Abstract:
The invention relates to a compensation method and phase-locked loop (PLL) circuit, wherein different kinds of two-point modulations are used and the integral regulator of a loop filter is replaced by introducing predetermined settings at the loop filter or at a voltage controlled oscillator. Thereby, the dynamic settling time of the PLL circuit can be improved to gain time for other circuit components which can thus assure required precision for the modulation.