Abstract:
A non-aqueous composition contains dispersed carbon-coated metal particles in an organic diluent in an amount of at least 10 weight %. The dispersed carbon-coated metal particles have a median diameter equal to or less than 0.6 μm, and are dispersed using a particle dispersing agent that has a weight average molecular weight (Mw) of at least 2,000 and up to and including 100,000 and comprises nitrogen-containing units. The median diameter of the dispersed particles is determined using a dynamic light scattering method. Moreover, when the non-aqueous composition contains up to and including 25 weight % of the dispersed carbon-coated metal particles, it exhibits no visual settling when subjected to a settling test of at least 24 hours at 20° C. Such non-aqueous compositions can include photocurable components and are useful to prepare photocurable and photocured electrically-conductive patterns and layers in various articles, including touch screen devices having touch screen displays.
Abstract:
An electronic component assembly comprises a printed component structure comprising at least one of a semiconducting ink, an insulating ink and a conducting ink deposited onto a substrate. The component structure defining at least one contact area, with a connecting lead disposed against or adjacent to the contact area. At least one layer of electrically insulating material encloses the component structure. At least one of the substrate and the layer of electrically insulating material comprises packaging material. The component structure can be printed on a substrate such as paper or another soft material, which is secured to a layer of insulating packaging material such as polyethylene. Instead, the substrate can be the insulating packaging material itself. Variations using hard and soft substrates are possible, and various examples of electronic component assembly are disclosed.
Abstract:
A circuit board comprises a first heat transfer structure including graphite or graphene, wherein at least a portion of the first heat transfer structure is disposed inside an insulating member and a primer layer is disposed on a surface of the first heat transfer structure. The first heat transfer structure may comprise a plurality of monomers, the monomers including a primer layer disposed on at least one surface of at least one layer of graphite or graphene.
Abstract:
A device comprising a single crystal diamond substrate with a buried electrically conducting layer with μm square openings spaced apart milled into the diamond by ablating the carbon above wherein the step of ablating uses a diode pumped tripled Nd:YAG laser at 355 nm and wherein the square openings have electrical contacts and wherein the resistance measured between the square openings is dominated by the buried electrically conducting layer and on the order of about 1 kΩ.
Abstract:
Systems and methods in accordance with embodiments of the invention implement graphene-based thermal management cores and printed wiring boards incorporating graphene-based thermal management cores. In one embodiment, a graphene-based thermal management core includes: a layer including at least one sheet of graphene; a first reinforcement layer; and a second reinforcement layer; where the layer including at least one sheet of graphene is disposed between the first reinforcement layer and the second reinforcement layer.
Abstract:
The present invention provides novel tank circuits that are totally passive, and they are made of conductive-grade carbon nanotubes (CNTs) on substrates, and preferably flexible substrates. These components and structures contain no traditional electronic materials such as silicon, metal oxides, or ceramics, and they are totally organic. They may be used in applications where the resonant frequency and amplitude of the sensor can be modulated by a thermal, mechanical, or chemical signal, such as temperature, strain, pressure, vibration, or humidity. All-organic, and consequently combustible, passive RF sensors have unique applications for defense and consumer industries.
Abstract:
Provided is a conductive composition that has a high conductivity and from which a coating can be formed easily. Also provided is a conductive film that has a high conductivity and in which electric resistance is less likely to increase even during expansion. A conductive composition is prepared by including an elastomer component, a fibrous carbon material having a graphite structure and a fiber diameter of not less than 30 nm, and a conductive carbon black having a structure. A conductive film formed from the conductive composition. The viscosity of the conductive composition formed into a coating with a solid content concentration of not less than 20% by mass, which is measured with a B-type viscometer with an H7 rotor under the conditions of a temperature of 25° C. and a rotation speed of 20 rpm, is not more than 200 Pa·s.
Abstract:
An elastically-deformable, conductive composite using elastomers and conductive fibers and simple fabrication procedures is provided. Conductive elastomeric composites offer low resistance to electrical current and are elastic over large (>25%) extensional strains. They can be easily interfaced/built into structures fabricated from elastomeric polymers.
Abstract:
A bondable conductive ink comprising carbon nanotubes, larger diameter conductive particles having at least one dimension of at least 100 nanometers which are not carbon nanotubes, a polymer, and a solvent, and a method of producing this bondable conductive ink. The ink is highly suitable for producing circuit assemblies having non-conductive substrates upon which printed conductors, formed from the bondable conductive ink, may be easily and selectively interconnected to another circuit assembly device, and/or apparatus.
Abstract:
The present disclosure is directed to a circuit board having a first electrically insulating layer, a first imaged metal layer and a first polyimide coverlay comprising a polyimide derived from 80 to 90 mole % 3,3′,4,4′-biphenyl tetracarboxylic dianhydride, 10 to 20 mole % 4,4′-oxydiphthalic anhydride and 100 mole % 2,2′-bis(trifluoromethyl) benzidine. An adhesive layer is not present between the first imaged metal layer and the first polyimide coverlay.