Abstract:
A semiconductor device comprises a substrate, a source region over the substrate, and a guard ring over the substrate. The guard ring is separated from the source region by a first spacing. The semiconductor device also comprises a first heat conductive layer formed over couples the source region and the guard ring. The semiconductor device further comprises a first via over a first portion of the first heat conductive layer. The semiconductor device additionally comprises a second via separate from the first via over a second portion of the first conductive layer. The semiconductor device also comprises a second heat conductive layer over and coupling the first via and the second via. In use, the semiconductor device generates heat, and the heat dissipates, at least partially, from the source region through the first heat conductive layer to the guard ring and the substrate.
Abstract:
A semiconductor structure includes a first gate-all-around (GAA) structure configured to form a first circuit and a second GAA structure configured to form a second circuit similar to the first circuit. The first GAA structure and the second GAA structure have a same of at least one of the following exemplary features: a number of GAA devices in which current flows from a first oxide definition (OD) region to a second OD region; a number of GAA devices in which current flows from the second OD region to the first OD region; a number of first OD region contact elements; a number of second OD region contact elements.
Abstract:
A method of forming one or more diodes in a fin field-effect transistor (FinFET) device includes forming a hardmask layer having a fin pattern, said fin pattern including an isolated fin area, a fin array area, and a FinFET area. The method further includes etching a plurality of fins into a semiconductor substrate using the fin pattern, and depositing a dielectric material over the semiconductor substrate to fill spaces between the plurality of fins. The method further includes planarizing the semiconductor substrate to expose the hardmask layer. The method further includes implanting a p-type dopant into the fin array area and portions of the FinFET area, and implanting an n-type dopant into the isolated fin area, a portion of the of fin array area surrounding the p-well and portions of the FinFET area. The method further includes annealing the semiconductor substrate.
Abstract:
An integrated circuit (IC) device includes a substrate, a first active region, first and second conductive patterns, and a first through via structure. The substrate has opposite first and second sides. The first active region is over the first side of the substrate. The first conductive pattern is over and electrically coupled to the first active region. The first through via structure extends from the second side, through the substrate, to the first side in electrical contact with the first active region. The second conductive pattern is under the second side of the substrate and electrically coupled to the first through via structure.
Abstract:
An integrated circuit (IC) including a plurality of finfet cells designed with digital circuit design rules to provide smaller finfet cells with decreased cell heights, and analog circuit cell structures including first finfet cells of the plurality of finfet cells and including at least one cut metal layer. The smaller finfet cells with decreased cell heights provide a first shorter metal track in one direction and the at least one cut metal layer provides a second shorter metal track in another direction to increase maximum electromigration currents in the integrated circuit.
Abstract:
A method of manufacturing conductive lines in a circuit is disclosed. The method includes grouping signal traces into a first set of signal traces and a second set of signal traces, fabricating, using a first mask, at least a first conductive line of a first signal trace of the first set of signal traces, and fabricating, using a second mask, at least a second conductive line of a second signal trace of the second set of signal traces. Each signal trace of the first set of signal traces has a first width. Each signal trace of the second set of signal traces has a second width different from the first width. The grouping is based on at least a current of at least a signal trace of the signal traces.
Abstract:
A circuit includes a first current source that provides a current and a resistive branch in series with the first current source that provides a first voltage value and a second voltage value. A capacitive device is coupled with a voltage node having a voltage value, and a switching network alternates between charging the capacitive device to have the voltage value increase to the first voltage value, and discharging the capacitive device to have the voltage value decrease to the second voltage value.
Abstract:
A bandgap reference circuit includes a first bipolar junction transistor (BJT) in series with a first current generator, the first BJT and the first current generator configured to produce a first proportional to absolute temperature (PTAT) signal. The circuit also includes a second BJT in series with a second current generator, the second BJT and the second current generator configured to produce a second PTAT signal. The bandgap reference circuit maintains a current through at least one of the first BJT or the second BJT within a constant ideality factor region of the at least one of the first BJT or the second BJT.
Abstract:
A device includes a first capacitor and a second capacitor connected to the first capacitor in parallel. The first capacitor includes a semiconductor region and a first plurality of gate stacks. The first plurality of gate stacks comprise a plurality of gate dielectrics over and contacting the semiconductor region, and a plurality of gate electrodes over the plurality of gate dielectrics. The second capacitor includes an isolation region, a second plurality of gate stacks over the isolation region, and a plurality of conductive strips over the isolation region and parallel to the second plurality of gate stacks. The second plurality of gate stacks and the plurality of conductive strips are laid out alternatingly.
Abstract:
A circuit includes a comparator unit and a switching network. The comparator unit is configured to receive a first voltage value, a second voltage value and a third voltage value of a voltage node, and to provide a control signal. The switching network includes the voltage node and is configured to operate in a first condition or in a second condition based on the control signal. Based on the first condition, the voltage node is configured to have a voltage value increase to the first voltage value. Based on a second condition, the voltage node is configured to have a voltage decrease to the second voltage.