Abstract:
A method of operating a memory device includes performing a data read operation on at least one victim sub-block within a memory block containing a plurality of sub-blocks therein, in response to an erase command directed to a selected sub-block within the plurality of sub-blocks. Next, a soft program operation is performed on the at least one victim sub-block. This soft programming operation is then followed by an operation to erase the selected sub-block within the plurality of sub-blocks. This operation to erase the selected sub-block may include providing an erase voltage to a bulk region of a substrate on which the memory block extends, and the at least one victim sub-block may be disposed between the selected sub-block and the substrate.
Abstract:
A three-dimensional (3D) flash memory includes a first dummy word line disposed between a ground select line and a lowermost main word line, and a second dummy word line of different word line configuration disposed between a string select line and an upper most main word line.
Abstract:
A nonvolatile memory device performs a method which includes: causing a ready/busy signal pin of the nonvolatile memory device to indicate that the nonvolatile memory device is in a precharge busy state wherein the nonvolatile memory device is not available to perform memory access operations for its nonvolatile memory cells; applying one or more word line precharge voltages to one or more selected word lines among a plurality of word lines of the nonvolatile memory device to precharge the selected word lines; and, after at least a portion of the precharge operation, causing the ready/busy signal pin to transition from indicating the precharge busy state, to indicating that the nonvolatile memory device is in a ready state wherein the nonvolatile memory device is available to perform memory access operations for its nonvolatile memory cells.
Abstract:
A method of operating a non-volatile memory device includes performing an erasing operation to memory cells associated with a plurality of string selection lines (SSLs), the memory cells associated with the plurality of SSLs constituting a memory block, and verifying the erasing operation to second memory cells associated with a second SSL after verifying the erasing operation to first memory cells associated with a first SSL.
Abstract:
A memory device is provided as follows. A memory cell region includes a plurality of blocks, each block including a plurality of NAND strings. A control logic divides the plurality of blocks into a plurality of block regions based on a smaller distance of a first distance with respect to a first edge of the memory cell region and a second distance with respect to a second edge of the memory cell region and controls an operation performed on the memory cell region using a plurality of bias sets of operation parameters for the operation. Each bias set is associated with one of the block regions.
Abstract:
According to example embodiments of inventive concepts, a nonvolatile memory device includes a memory cell array, an address decoder, an input/output circuit, a voltage generation circuit, and control logic. The memory cell array includes a plurality of memory blocks on a substrate. Each of the memory blocks includes a plurality of strings connected between bit lines and a common source line. The address decoder is configured to measure impedance information of word lines of a selected memory block. The voltage generation circuit is configured to generate word line voltages to be applied to word lines, and at least one of the word line voltages includes an offset voltage and a target voltage. The control logic is configured to adjust a level of the offset voltage and the offset time depending on the measured impedance information of the word lines.
Abstract:
An operating method of a nonvolatile memory, which includes a plurality of cell strings, each cell string having a plurality of memory cells and a string selection transistor stacked on a substrate, includes detecting threshold voltages of the string selection transistors of the plurality of cell strings; adjusting voltages to be supplied to the string selection transistors according to the detected threshold voltages; and applying the adjusted voltages to the string selection transistors to select or unselect the plurality of cell strings during a programming operation.
Abstract:
A driving method of a nonvolatile memory device includes receiving a program command and an address. The method includes changing a number of adjacent zones of a plurality of zones formed of unselected word lines according to a location of a selected word line corresponding to the received address. The method further includes applying different zone voltages to the number of adjacent zones and remaining zones. The nonvolatile memory device includes a plurality of strings formed to penetrate word lines stacked on a substrate in a plate shape.
Abstract:
A voltage generator includes a first trim unit and a second trim unit. The first trim unit generates a first voltage variable depending on temperature variation and a second voltage invariable irrespective of the temperature variation based on a power supply voltage, and performs a first trim operation by changing a level of the second voltage. The level of the second voltage at a first temperature becomes substantially the same as a level of the first voltage at the first temperature based on the first trim operation. The second trim unit generates an output voltage based on the power supply voltage, the first and second voltages, a reference voltage and a feedback voltage, and performs a second trim operation by adjusting variation of the output voltage depending on the temperature variation based on a result of the first trim operation.
Abstract:
A memory device is provided as follows. A memory cell region includes a plurality of blocks, each block including a plurality of NAND strings. A control logic divides the plurality of blocks into a plurality of block regions based on a smaller distance of a first distance with respect to a first edge of the memory cell region and a second distance with respect to a second edge of the memory cell region and controls an operation performed on the memory cell region using a plurality of bias sets of operation parameters for the operation. Each bias set is associated with one of the block regions.