Abstract:
Methods to achieve strained channel finFET devices and resulting finFET devices are presented. In an embodiment, a method for processing a field effect transistor (FET) device may include forming a fin structure comprising a fin channel on a substrate. The method may also include forming a sacrificial epitaxial layer on a side of the fin structure. Additionally, the method may include forming a deep recess in a region that includes at least a portion of the fin structure, wherein the fin structure and sacrificial layer relax to form a strain on the fin channel. The method may also include depositing source/drain (SD) material in the deep recess to preserve the strain on the fin channel.
Abstract:
A neuromorphic multi-bit digital weight cell configured to store a series of potential weights for a neuron in an artificial neural network. The neuromorphic multi-bit digital weight cell includes a parallel cell including a series of passive resistors in parallel and a series of gating transistors. Each gating transistor of the series of gating transistors is in series with one passive resistor of the series of passive resistors. The neuromorphic cell also includes a series of programming input lines connected to the series of gating transistors, an input terminal connected to the parallel cell, and an output terminal connected to the parallel cell.
Abstract:
Multi-Vt horizontal nanosheet devices and a method of making the same. In one embodiment, an integrated circuit includes a plurality of horizontal nanosheet devices (hNS devices) on a top surface of a substrate, the plurality of hNS devices including a first hNS device and a second hNS device spaced apart from each other horizontally. Each of the hNS devices includes a first and a second horizontal nanosheets spaced apart vertically; and a gate stack between the first and second horizontal nanosheets, the gate stack including a work function metal (WFM) layer. A thickness of the first and second horizontal nanosheets of the first hNS device is different from a thickness of the first and second horizontal nanosheets of the second hNS device, and a thickness of the WFM layer of the first hNS device is different from a thickness of the WFM layer of the second hNS device.
Abstract:
According to an embodiment of the present invention, a method of manufacturing a FET device having a set BTBT leakage and a maximum VDD includes: determining an x value in InxGa1-xAs according to the BTBT leakage and the maximum VDD, and forming a channel utilizing InxGa1-xA, wherein x is not 0.53.
Abstract:
A metal oxide semiconductor field effect transistor (MOSFET) includes a substrate having a source region, a drain region, and a channel region between the source region and the drain region, the substrate having an epitaxial III-V material that includes three elements thereon, a source electrode over the source region, a drain electrode over the drain region, and a crystalline oxide layer including an oxide formed on the epitaxial III-V material in the channel region, the epitaxial III-V material including three elements.
Abstract:
Exemplary embodiments provide for fabricating a biaxially strained nanosheet. Aspects of the exemplary embodiments include: growing an epitaxial crystalline initial superlattice having one or more periods, each of the periods comprising at least three layers, an active material layer, a first sacrificial material layer and a second sacrificial material layer, the first and second sacrificial material layers having different material properties; in each of the one or more periods, placing each of the active material layers between the first and second sacrificial material layers, wherein lattice constants of the first and second sacrificial material layers are different than the active material layer and impose biaxial stress in the active material layer; selectively etching away all of the first sacrificial material layers thereby exposing one surface of the active material for additional processing, while the biaxial strain in the active material layers is maintained by the second sacrificial material layers; and selectively etching away all of the second sacrificial material layers thereby exposing a second surface of the active material layers for additional processing.
Abstract:
Exemplary embodiments provide for fabricating a field effect transistor (FET) with an interface layer for a gate stack using an O3 post treatment. Aspects of the exemplary embodiments include: forming a semiconductor body upon a substrate; cleaning the surface of the semiconductor body; depositing a first dielectric layer on the semiconductor body; performing an O3 treatment to form a new interface layer that incorporates material from the substrate and material from the first dielectric layer; and performing gate stack processing, including deposition of a gate electrode.
Abstract:
Methods of forming a semiconductor device are provided. A method of forming a semiconductor device includes forming a metal layer on source/drain regions of respective semiconductor structures, after replacing a dummy gate structure of the semiconductor device with a metal gate structure. The method includes forming a contact structure that overlaps the metal layer on one or more, but not all, of the semiconductor structures. Moreover, an insulating material is between the source/drain regions.
Abstract:
An integrated circuit chip includes a semiconductor substrate, a first back-end-of-line unit circuit that includes a first group of field effect transistors, a second gate-loaded unit circuit that includes a second group of field effect transistors. The first group of field effect transistors includes a first transistor and the second group of field effect transistors includes a second transistor. A bottom surface of a gate electrode of the first transistor extends closer to a bottom surface of the semiconductor substrate than does a bottom surface of a gate electrode of the second transistor.
Abstract:
Methods of forming a Field Effect Transistor (FET) are provided. The methods may include forming a region that provides enhanced oxidation under a fin-shaped FET (FinFET) body.