Abstract:
A magnetic junction memory array and methods of using the same are described. The magnetic junction memory array includes a plurality of electrically conductive word lines extending in a first direction, a plurality of electrically conductive bit lines extending in a second direction and forming a cross-point array with the plurality of electrically conductive word lines, and a memory cell proximate to, at least selected, cross-points forming a magnetic junction memory array. Each memory cell includes a magnetic pinned layer electrically between a magnetic bit and an isolation transistor. The isolation transistor has a current source and a gate. The current source is electrically coupled to the cross-point bit line and the gate is electrically coupled to the cross-point word line. An electrically conductive cover layer is disposed on and in electrical communication with the magnetic bits.
Abstract:
A magnetic cell includes a ferromagnetic free layer having a free magnetization orientation direction and a first ferromagnetic pinned reference layer having a first reference magnetization orientation direction that is parallel or anti-parallel to the free magnetization orientation direction. A first oxide barrier layer is between the ferromagnetic free layer and the first ferromagnetic pinned reference layer. The magnetic cell further includes a second ferromagnetic pinned reference layer having a second reference magnetization orientation direction that is orthogonal to the first reference magnetization orientation direction. The ferromagnetic free layer is between the first ferromagnetic pinned reference layer and the second ferromagnetic pinned reference layer.
Abstract:
A random number generator device that utilizes a magnetic tunnel junction. An AC current source is in electrical connection to the magnetic tunnel junction to provide an AC current having an amplitude and a frequency through the free layer of the magnetic tunnel junction, the AC current configured to switch the magnetization orientation of the free layer via thermal magnetization. A read circuit is used to determine the relative orientation of the free layer magnetization in relation to the reference layer magnetization orientation.
Abstract:
Apparatus and associated method for writing data to a non-volatile memory cell, such as spin-torque transfer random access memory (STRAM). In accordance with some embodiments, a resistive sense element (RSE) has a heat assist region, magnetic tunneling junction (MTJ), and pinned region. When a first logical state is written to the MTJ with a spin polarized current, the pinned and heat assist regions each have a substantially zero net magnetic moment. When a second logical state is written to the MTJ with a static magnetic field, the pinned region has a substantially zero net magnetic moment and the heat assist region has a non-zero net magnetic moment.
Abstract:
A method of producing bit-patterned media is provided whereby a shell structure is added on a bit-patterned media dot. The shell may be an antiferromagnetic material that will help stabilize the magnetization configuration at the remanent state due to exchange coupling between the dot and its shell. Therefore, this approach also improves the thermal stability of the media dot and helps each individual media dot maintain a single domain state.
Abstract:
An apparatus and associated method for a non-volatile memory cell with a phonon-blocking insulating layer. In accordance with various embodiments, a magnetic stack has a tunnel junction, ferromagnetic free layer, pinned layer, and an insulating layer that is constructed of an electrically and thermally insulative material that blocks phonons while allowing electrical transmission through at least one conductive feature.
Abstract:
A method and apparatus for stray magnetic field compensation in a non-volatile memory cell, such as a spin-torque transfer random access memory (STRAM). In some embodiments, a first tunneling barrier is coupled to a reference structure that has a perpendicular anisotropy and a first magnetization direction. A recording structure that has a perpendicular anisotropy is coupled to the first tunneling barrier and a nonmagnetic spacer layer. A compensation layer that has a perpendicular anisotropy and a second magnetization direction in substantial opposition to the first magnetization direction is coupled to the nonmagnetic spacer layer. Further, the memory cell is programmable to a selected resistance state with application of a current to the recording structure.
Abstract:
Memory units that have a magnetic tunnel junction cell that utilizes spin torque and a current induced magnetic field to assist in the switching of the magnetization orientation of the free layer of the magnetic tunnel junction cell. The memory unit includes a spin torque current source for passing a current through the magnetic tunnel junction cell, the spin torque current source having a direction perpendicular to the magnetization orientations, and also includes a magnetic ampere field current source is oriented in a direction orthogonal or at some angles to the magnetization orientations.
Abstract:
A magnetic tunnel junction cell having a free layer, a ferromagnetic pinned layer, and a barrier layer therebetween. The free layer has a central ferromagnetic portion and a stabilizing portion radially proximate the central ferromagnetic portion. The construction can be used for both in-plane magnetic memory cells where the magnetization orientation of the magnetic layer is in the stack film plane and out-of-plane magnetic memory cells where the magnetization orientation of the magnetic layer is out of the stack film plane, e.g., perpendicular to the stack plane.
Abstract:
An apparatus and method for compensating for asymmetric write current in a non-volatile unit cell. The unit cell comprises a switching device and an asymmetric resistive sense element (RSE), such as an asymmetric resistive random access memory (RRAM) element or an asymmetric spin-torque transfer random access memory (STRAM) element. The RSE is physically oriented within the unit cell relative to the switching device such that a hard direction for programming the RSE is aligned with an easy direction of programming the unit cell, and an easy direction for programming the RSE is aligned with a hard direction for programming the unit cell.