Abstract:
A magnetic sensor assembly includes first and second shields each comprised of a magnetic material. The first and second shields define a physical shield-to-shield spacing. A sensor stack is disposed between the first and second shields and includes a seed layer adjacent the first shield, a cap layer adjacent the second shield, and a magnetic sensor between the seed layer and the cap layer. At least a portion of the seed layer and/or the cap layer comprises a magnetic material to provide an effective shield-to-shield spacing of the magnetic sensor assembly that is less than the physical shield-to-shield spacing.
Abstract:
Circuits, methods, and apparatus that may provide a separation between a signal ground and an enclosure ground such that EMI and ESD circuits are not bypassed. One example may provide a connector receptacle having fingers for contacting a device enclosure, where the fingers are not directly electrically connected to a shell of the connector receptacle. These fingers may be isolated from the shell along a top-side by an electrically insulating layer. These fingers may be further insulated from the shell along a back side by a nonconductive piece or portion of a housing.
Abstract:
Connector inserts and receptacles that are robust, easily manufactured, and provide an improved connector performance. One example may provide a connector receptacle having a power contact located in a ground surface. An insulating layer may be placed between the power contact and the ground surface. The ground surface may be curved or flat, or it may have other shapes. Another example may provide a robust connector insert. This connector insert may include a crimping piece that fits over a cable braiding and is crimped. The crimping piece may then be attached to an attraction plate. A cover or shell may be attached to provide further reinforcement. Another example may provide a connector system having a ground contact and a power contact, where the ground contact is a make-first-break-last contact.
Abstract:
A magnetic read sensor having improved magnetic performance and robustness. The magnetic sensor includes a magnetic free layer and a magnetic pinned layer structure. The magnetic pinned layer structure includes first and second magnetic layers separated from one another by a non-magnetic coupling layer. The second magnetic layer of the magnetic pinned layer structure includes a layer of CoFeBTa, which prevents the diffusion of atoms and also promotes a desired BCC crystalline grain growth. The magnetic free layer structure can also include such a CoFeBTa layer for further prevention of atomic diffusion and further promotion of a desired BCC grain growth.
Abstract:
A circuit for driving ultrasound transducers uses a sample-and-hold circuit to sample multiple sample periods of a transducer driving waveform, and uses the samples to modify drive parameters. Use of multiple sample periods enables independent measurement and adjustment of different portions of the transducer driving waveform to ensure mirror symmetry.
Abstract:
Connector receptacles that are simple to assemble, provide good shielding, and consume a reduced or limited amount of space inside a device enclosure. To simplify assembly, these receptacles may include a subassembly that is inserted into a hollow tongue. The subassembly may include a first number of contacts that are insert molded in a first overmold, as well as a second number of contacts that may be inserted into a second overmold. To improve ground shielding, one or more ground contacts at a front of the receptacle may be split to provide shielding in a back of the receptacle. The tongue may further include ground contacts on its sides and top. The contacts may terminate in through-hole portions to reduce the space consumed by the receptacle.
Abstract:
Power cables that include plug housings having an improved appearance as well as employ a halogen-free cable while providing adequate fire resistance. One example provides a power cable having cable plug with a substantially unitary body. Another example provides a power cable that is formed using halogen-free materials. To provide adequate fire protection, a strain relief formed using multiple materials is used.
Abstract:
A magnetic read sensor having improved magnetic performance and robustness. The magnetic sensor includes a magnetic free layer and a magnetic pinned layer structure. The magnetic pinned layer structure includes first and second magnetic layers separated from one another by a non-magnetic coupling layer. The second magnetic layer of the magnetic pinned layer structure includes a layer of CoFeBTa, which prevents the diffusion of atoms and also promotes a desired BCC crystalline grain growth. The magnetic free layer structure can also include such a CoFeBTa layer for further prevention of atomic diffusion and further promotion of a desired BCC grain growth.