Abstract:
A multi charged particle beam writing apparatus includes a divided shot data generation unit to generate, for each shot of multi beams of charged particle beams, data for plural times of divided shots such that irradiation for one shot of each beam is divided into plural times of divided shots each having a different irradiation time, an individual blanking system to provide blanking control individually for each of multi beams, based on the data for plural times of divided shots, an elastic rate correction value acquisition unit to acquire, for each of plural times of divided shots, an elastic rate correction value for correcting an elastic rate of an image of the whole multi beams, depending upon the number of ON-beams of the multi beams, and a lens to correct, for each divided shot, the elastic rate of the image of the whole multi beams by using the correction value.
Abstract:
A method of axially aligning a charged particle beam implemented by a charged particle beam system equipped with an astigmatic correction lens including a first pair of coils and a second pair of coils. The method starts with obtaining first to sixth sets of image data while varying currents flowing through the first to fourth coils according to first to sixth sets of conditions. Then, the values of the currents through the first to fourth coils for correcting the position of the axis of the beam are calculated based on the first to sixth sets of image data.
Abstract:
An electron microscope is provided. In another aspect, an electron microscope employs a radio frequency which acts upon electrons used to assist in imaging a specimen. Furthermore, another aspect provides an electron beam microscope with a time resolution of less than 1 picosecond with more than 105 electrons in a single shot or image group. Yet another aspect employs a super-cooled component in an electron microscope.
Abstract:
An electron microscope is provided. In another aspect, an electron microscope employs a radio frequency which acts upon electrons used to assist in imaging a specimen. Furthermore, another aspect provides an electron beam microscope with a time resolution of less than 1 picosecond with more than 105 electrons in a single shot or image group. Yet another aspect employs a super-cooled component in an electron microscope.
Abstract:
Disclosed herein is a microcolumn with a double aligner. The microcolumn is configured such that when an axis of an aperture of a limiting aperture is spaced apart from an original path of a particle beam, the path of the particle beam can be effectively compensated for in such a way that the path of the particle beam is aligned with the axis of the aperture of the limiting aperture by the double aligner. The microcolumn includes a source lens. The source lens includes at least two aligner layers which compensate for the path of the particle beam.
Abstract:
A single column inductively coupled plasma source with user selectable configurations operates in ion-mode for FIB operations or electron mode for SEM operations. Equipped with an x-ray detector, energy dispersive x-ray spectroscopy analysis is possible. A user can selectively configure the ICP to prepare a sample in the ion-mode or FIB mode then essentially flip a switch selecting electron-mode or SEM mode and analyze the sample using EDS or other types of analysis.
Abstract:
A charged particle source for a focused particle beam system such as a transmission electron microscope (TEM), scanning transmission electron microscope (STEM), scanning electron microscope (SEM), or focused ion beam (FIB) system is disclosed. The source employs a multiplicity of independently-addressable emitters within a small region which can be centered on the axis of the charged particle system. All of the emitters may be individually controlled to enable emission from one or more tips simultaneously. A mode with only one emitter activated corresponds to high brightness, while modes with multiple emitters simultaneously activated provides high angular intensities with lower brightness. Source lifetimes can be extended through sequential use of single emitters. A combined mechanical and electrical alignment procedure for all emitters is described.
Abstract:
The invention relates to a charged particle multi-beamlet lithographic system for exposing a target using a plurality of beamlets. The system comprises a beamlet generator for generating a plurality of beamlets, a beamlet blanker for controllably blanking beamlets, and an array of projection lens systems for projecting unblanked beamlets on to the surface of the target. The beamlet generator comprises at least one charged particle source for generating a charged particle beam, a sub-beam generator for defining a plurality of sub-beams from the charged particle beam, a sub-beam manipulator array for influencing the sub-beams, and an aperture array for defining beamlets from the sub-beams.
Abstract:
The invention provides a method for patterning a resist coated substrate carried on a stage, where the patterning utilizes a charged particle beam. The method comprises the steps of: moving the stage at a nominally constant velocity in a first direction; while the stage is moving, deflecting the charged particle beam in the first direction to compensate for the movement of the stage, the deflecting including: (a) compensating for an average velocity of the stage; and (b) separately compensating for the difference between an instantaneous position of the stage and a calculated position based on the average velocity. The separately compensating step uses a bandwidth of less than 10 MHz. The invention also provides a deflector control circuit for implementing the separate compensation functions.
Abstract:
An electron beam apparatus, in which an electron beam emitted from an electron gun having a cathode and an anode is focused and irradiated onto a sample, and secondary electrons emanated from the sample are directed into a detector, the apparatus further comprising means for optimizing irradiation of the electron beam emitted from the electron gun onto the sample, the optimizing means may be two-stage deflectors disposed in proximity to the electron gun which deflects and directs the electron beam emitted in a specific direction so as to be in alignment with the optical axis direction of the electron beam apparatus, the electron beam emitted in the specific direction being at a certain angle with respect to the optical axis due to the fact that, among the crystal orientations of said cathode, a specific crystal orientation allowing a higher level of electron beam emission out of alignment with the optical axis direction.