摘要:
A vehicle is provided with a continuously variable transmission device and an electric control unit controlling an engine, a motor generator, and the continuously variable transmission device. The electric control unit selects any one of a plurality of operation modes, having different correlations between a driver's accelerator operation amount and a control throttle opening, to suit driver's requests, and performs a number-of-revolutions increase control for increasing an engine rotation speed according to at least one of elapsed time from a time point of a vehicle speed increase and elapsed time from a time point of an acceleration request in a case where the control throttle opening exceeds a predetermined threshold. The electric control unit controls the engine to suppress the engine rotation speed change due to a change of the operation mode in a case where the control throttle opening is changed across the predetermined threshold in response to the change of the operation mode.
摘要:
The present disclosure discloses a vehicle and a coasting feedback control method for the same. The coasting feedback control method includes the following steps: detecting the current speed of a vehicle, the depth of a braking pedal of the vehicle, and the depth of an accelerator pedal; and when the current speed of the vehicle is greater than a preset speed, both the depth of the braking pedal and the depth of the accelerator pedal are 0, and the current gear of the vehicle is gear D, when the vehicle is not in a cruise control mode and an anti-lock braking system of the vehicle is in a non-working state, controlling the vehicle to enter a coasting feedback control mode, where when the vehicle is in the coasting feedback control mode, a coasting feedback torque of a first motor generator and a coasting feedback torque of a second motor generator are distributed according to a selected coasting feedback torque curve of the vehicle.
摘要:
In a vehicle including an engine and a motor generator that are connected to a drive wheel, when a predetermined condition is satisfied during a motor creep mode in which creep torque is generated by the motor generator, an ECU performs motor creep cutoff for decreasing torque of the motor generator. When an engine start request has been issued during the motor creep cutoff, the ECU increases the torque of the motor generator to a target creep torque at a predetermined rate of increase. After the MG torque has reached the target creep torque, the ECU starts the engine. The predetermined rate of increase is set to a rate lower than a rate of increase in engine torque at the start of the engine.
摘要:
A system and a method for reducing exhaust gas of a hybrid electric vehicle are disclosed. A system for reducing exhaust gas of a hybrid electric vehicle according to an exemplary form of the present disclosure may include: a battery management system measuring a state of charge (SOC) of a high voltage battery of the hybrid electric vehicle; a motor control unit controlling a driving motor with power of the high voltage battery to generate motor driving force; an engine control unit controlling an engine to generate engine driving force; and a hybrid control unit checking an all electric range (AER) according to a driving in a charge depleting (CD) mode of the hybrid electric vehicle to perform a catalyst heating and warm up control by starting the engine in the CD mode in the case in which the checked AER exceeds a reference AER.
摘要:
A vehicle drive includes a gear set, a first motor/generator coupled to a sun gear of the gear set, a second motor/generator selectively coupled to at least one of (a) a planetary gear carrier of the gear set and (b) a ring gear of the gear set, an engine coupled to the ring gear of the gear set and selectively coupled to the second motor/generator, and a clutch configured to selectively engage the second motor/generator to the engine. The first motor/generator and the second motor/generator are electrically coupled without an energy storage device configured to at least one of (a) provide electrical energy to the first motor/generator or the second motor/generator to power the first motor/generator or the second motor/generator and (b) be charged by electrical energy from the first motor/generator or the second motor/generator.
摘要:
A hybrid vehicle includes a traction battery having a battery fan, an engine, an electric machine coupled to the battery, and a controller or at least one powertrain module having a controller. The controller is programmed to respond to a change in a user selected powertrain operating mode to a performance mode. This change may occur while a pedal demand is generally constant. The controller may increase an available power of the battery to drive the electric machine without altering state of charge operating limits of the battery. The increase in available power of the battery may include increasing a state of charge of the battery or reducing the battery temperature such that a current may flow from the battery for a longer time period. Also, the overall available power for the vehicle may include operation of the engine at a higher rotational speed.
摘要:
A vehicle control system for reducing shocks resulting from restarting an engine under EV running mode. The vehicle control system is applied to a vehicle including an engagement device that selectively connect the engine with the powertrain, and a motor adapted to generate a drive force and connected with the powertrain. In the vehicle, a first mode is selected to propel the vehicle by the motor while interrupting the torque transmission between the engine and the powertrain and stopping the engine, and a second mode is selected to propel the vehicle by the motor while allowing the torque transmission between the engine and the powertrain and stopping the engine. The vehicle control system selects the second mode if a control response of at least any of the engagement device and the motor is estimated to be out of a predetermine range when the vehicle is running while stopping the engine.
摘要:
A powertrain system employing multiple propulsion torque actuators is described. A method for controlling the powertrain system includes interpreting a driver request, including determining a driver torque request and a regenerative braking request based upon driver inputs to an accelerator pedal and a brake pedal. A desired request is determined based upon the driver torque request and the regenerative braking request. Torque limits for the powertrain system are coordinated based upon the desired request, the driver torque request, and a previous driver torque request to determine upper and lower output torque limits, and the upper and lower output torque limits are combined with system constraints to generate a final torque request. The final torque request is employed to determine torque commands for the propulsion torque actuators, and the propulsion torque actuators are controlled based upon the torque commands for the propulsion torque actuators.
摘要:
The invention relates to a self-propelling work machine in the form of a tracked vehicle having an electric drive, with a generator drivable by an internal combustion engine, an auxiliary unit connected to the engine, and a braking apparatus for braking the work machine. The braking apparatus provides regenerative braking by the electric drive and comprises a feedback apparatus for feeding back electrical motor braking power of the electric motor to the generator to apply the motor braking power on the engine and on the auxiliary unit. The invention further relates to a method for braking the work machine. In accordance with the invention, a control apparatus is provided for the automatic increase and/or decrease of the power pick-up of the auxiliary unit in dependence on the electrical motor braking power fed back to the engine and/or on the operating state of the engine acted on by motor braking power.
摘要:
A hybrid system includes a hybrid module that is located between an engine and a transmission. The hybrid system includes an energy storage system for storing energy from and supplying energy to the hybrid module. An inverter transfers power between the energy storage system and the hybrid module. The hybrid system also includes a cooling system, a DC-DC converter, and a high voltage tap. The hybrid module is designed to recover energy, such as during braking, as well as power the vehicle. The hybrid module includes an electrical machine (eMachine) along with electrical and mechanical pumps for circulating fluid. A clutch provides the sole operative connection between the engine and the eMachine. The hybrid system further incorporates a power take off (PTO) unit that is configured to be powered by the engine and/or the eMachine.