摘要:
A charging management system (CMS) and a charging management method for a charger of an electric vehicle are provided. The CMS includes a charger grid micro-dispatching system (CGMS) module, a charger battery management system (CBMS) module, a charger vehicle-dispatching management system (CVMS) module, a charger network management system (CNMS) module, and a charger charging management system (CCMS) module. An intelligent safety redundant strategy and a fault recording strategy are introduced, and multiple related parameters of a battery management system (BMS) are built in the CBMS module, so as to realize an intelligent active protection during charging the electric vehicle. Meanwhile, through analyzing the BMS and characteristic data of a power battery, cooperating with the CCMS module, adopting a multi-dimension data analyzing and controlling strategy, and outputting an optimized flexible curve current based on battery charging, life time of the battery is lengthened.
摘要:
A battery charging system includes a charger that is configured to charge and discharge a battery. The battery system further includes a controller programmed to operate the charger based on a state of charge of the battery to, during a storage duration, maintain the state of charge at a partial charge level. The charger may be operated to charge and discharge the battery during the storage duration. Upon expiration of the storage duration, the controller operates the charger to maintain the state of charge at an operating charge level. The partial charge level is selected to reduce an amount of degradation to the battery relative to the operating charge level for a same duration of time. The battery charging system includes remote connectivity such that the storage duration may be modified during the storage duration from a remote device.
摘要:
A method is used for controlling a battery having at least one battery module line with a plurality of battery modules that are connected in series. Each battery module has at least one battery cell, at least one coupling unit, a first connection, and a second connection. Each battery module is configured to assume one of at least two switching states dependent on a control of the coupling unit. The different switching states correspond to different voltage values between the first connection and the second connection of the battery module. The method includes determining a ranking among the battery modules. The method also includes engaging the battery modules in a supply of a desired output voltage of the battery module line using the ranking. The battery modules compare respective battery module operating states among one another and determine the ranking on the basis of the comparison.
摘要:
A hybrid or electric vehicle includes a lithium-ion battery and a controller. The controller is programmed to discharge the battery through an electrical load to a predetermined voltage less than a voltage associated with zero state of charge such that relative degrees of lithiation associated with the electrodes of the battery change for at least one state of charge resulting in an increase in battery maximum capacity. The controller may be on-board or off-board of the vehicle. The electrical load may be part of the vehicle or external to the vehicle.
摘要:
Systems and methods are provided for detecting that an electric motor drive vehicle (e.g., an electric scooter or motorbike) is idling based on one or more of sensed parameters indicative of the idling state. These sensed parameters may include one or more of, alone or in any combination, a sensed throttle position, at least one sensed electrical characteristic of a traction electric motor, a power converter, or an electrical storage device of the vehicle, and a sensed rate of rotation of a drive shaft of the traction electric motor or of a wheel drivably coupled to the traction electric motor. Upon detecting that the vehicle is in an idling state, a controller of the vehicle enters into a standby mode. In the standby mode, a relatively small amount of electrical power is supplied to the traction electric motor to cause a vibration of the motor to alert a driver that the vehicle is ON in the standby mode and is ready to be driven. Additionally, an audible and/or visual indication may be issued in the standby mode to further alert the driver that the vehicle is ON and ready to be driven.
摘要:
A method is provided for monitoring a state of health of a vehicle system and includes measuring a plurality of parameter values for the system at different running conditions as an end of line test, storing the parameter values in a fingerprint file, measuring the same plurality of parameter values that is comprised in the fingerprint file after a predefined time interval, adding a predefined, ageing offset to the fingerprint file, where the ageing offset corresponds to a predicted wear of the system during the predefined time interval, thereby obtaining a time modified fingerprint file for the system, comparing the measured values with the time modified fingerprint file, and issuing a message if the measured values deviates from the time modified fingerprint file. The state of health can be compared with initial measurements such that the state of health of a vehicle system or component can be monitored over a longer time period.
摘要:
A charging control unit sets a fully charged state of a power storage device so as to have a margin for a fully charged capacity of the power storage device. The charging control unit sets the fully charged state to be variable in accordance with a degree of deterioration of the power storage device such that the margin becomes smaller as the degree of deterioration of the power storage device is larger. A traveling control unit switches between first control and second control in accordance with a degree of decrease of the margin when regenerative electric power exceeds a charging power upper limit value, the first control being control for regenerating, to the power storage device, an excess of the regenerative electric power relative to the charging power upper limit value, the second control being control for consuming the excess of the regenerative electric power using an auxiliary load.
摘要:
A hybrid or electric vehicle includes a lithium-ion battery and a controller. The controller is programmed to discharge the battery through an electrical load to a predetermined voltage less than a voltage associated with zero state of charge such that relative degrees of lithiation associated with the electrodes of the battery change for at least one state of charge resulting in an increase in battery maximum capacity. The controller may be on-board or off-board of the vehicle. The electrical load may be part of the vehicle or external to the vehicle.
摘要:
The present disclosure provides a method for obtaining degradation of a battery comprising the steps of collecting data of the battery and data related to the degradation of the battery; processing the collected data to obtain parameters related to the degradation of the battery; creating and updating a degradation model for the battery with the obtained parameters; and computing the degradation of the battery by using the degradation model and the parameters.
摘要:
Provided is a battery control device that can accurately detect a state of charge even if characteristics relating to the state of charge change as a result of battery degradation. This battery control device is provided with map data describing the correspondence relationship between an open-circuit voltage and a state of charge of the battery and outputs different state-of-charge values for the same open-circuit voltage according to the amount of elapsed time.