Abstract:
A weight cell, an electronic device and a device are provided. The weight cell includes a first resistive memory element and a second resistive memory element, a select transistor, and a layer of Spin Hall (SH) material disposed between the first resistive memory element and the second resistive memory element, the layer of the SH material including a first contact and a second contact. The first contact of the SH material is connected to a drain of the select transistor and the second contact of the SH material is connected to an external word line.
Abstract:
A weight cell, an electronic device and a device are provided. The weight cell includes a first resistive memory element and a second resistive memory element, a select transistor, and a layer of Spin Hall (SH) material disposed between the first resistive memory element and the second resistive memory element, the layer of the SH material including a first contact and a second contact. The first contact of the SH material is connected to a drain of the select transistor and the second contact of the SH material is connected to an external word line.
Abstract:
A hardware-embedded security system is described. The system includes connective components, circuit elements and an insulator. The connective components include a variable conductivity layer that is conductive for a first stoichiometry and insulating for a second stoichiometry. A first portion of the circuit elements are connected to a first portion of the connective components and are active. A the second portion of the circuit elements are connected to a second portion of the connective components and are inactive. The insulator is adjacent to at least a portion of each of the connective components. The first stoichiometry is indistinguishable from the second stoichiometry via optical imaging and electron imaging of a portion of the insulator and the variable conductivity layer.
Abstract:
A tap cell configured to enable electrical connection from a buried power rail of an integrated circuit to a power distribution network includes. The tap cell includes a buried power rail layer including VDD and VSS power supply lines, insulating layers and metal layers alternately arranged on the buried power rail layer, a first power supply interconnect in metal layer M1 or higher electrically coupled to the VDD power supply line, and a second power supply interconnect in metal layer M1 or higher electrically connected to the VSS power supply line. The first power supply interconnect and the second power supply interconnect are configured to be electrically connected to the power distribution network, and the VDD and VSS power supply lines are configured to supply power from the power distribution network to the buried power rail of the integrated circuit. The tap cell is free of any active semiconductor devices.
Abstract:
A field effect transistor including a source region, a drain region, a channel region extending between the source region and the drain region, a gate on the channel region, a gate contact on the gate at an active region of the gate, a source contact on the source region, a drain contact on the drain region, and recesses in the source and drain contacts substantially aligned with the gate contact. Upper surfaces of the recesses in the source and drain contacts are spaced below an upper surface of the gate by a depth.
Abstract:
A neuromorphic multi-bit digital weight cell configured to store a series of potential weights for a neuron in an artificial neural network. The neuromorphic multi-bit digital weight cell includes a parallel cell including a series of passive resistors in parallel and a series of gating transistors. Each gating transistor of the series of gating transistors is in series with one passive resistor of the series of passive resistors. The neuromorphic cell also includes a series of programming input lines connected to the series of gating transistors, an input terminal connected to the parallel cell, and an output terminal connected to the parallel cell.
Abstract:
A system of unipolar digital logic. Ferroelectric field effect transistors having channels of a first polarity, are combined, in circuits, with simple field effect transistors having channels of the same polarity, to form logic gates and/or memory cells.
Abstract:
A Gate-All-Around (GAA) Field Effect Transistor (FET) can include a horizontal nanosheet conductive channel structure having a width in a horizontal direction in the GAA FET, a height that is perpendicular to the horizontal direction, and a length that extends in the horizontal direction, where the width of the horizontal nanosheet conductive channel structure defines a physical channel width of the GAA FET. First and second source/drain regions can be located at opposing ends of the horizontal nanosheet conductive channel structure and a unitary gate material completely surrounding the horizontal nanosheet conductive channel structure.
Abstract:
A semiconductor device includes: a substrate; a power rail on the substrate; an active layer on the substrate and at same layer as the power rail; and a contact electrically connecting the power rail to the active layer. The active layer includes source/drain terminals.
Abstract:
Semiconductor devices and methods of forming the same are provided. The semiconductor devices may include a finFET, a metal routing layer, a first local interconnect layer, and a second local interconnect layer. The finFET may include a channel, a first source/drain region, a second source/drain region, and a gate stack. The metal routing layer may be separated from the finFET in a vertical direction. The first local interconnect layer may include a first local interconnect that contacts a first metal route in the metal routing layer and that electrically connects to the first source/drain region. The second local interconnect layer may include a second local interconnect that contacts a second metal route in the metal routing layer and that electrically connects to the gate stack.