Abstract:
A method of manufacturing a glass includes forming a first etch protection layer on a first surface of a glass substrate, and forming a second etch protection layer on a second surface of the glass substrate; removing a part of the first protection layer and a part of the second protection layer by applying a laser pulse penetrating the glass substrate from above the first surface of the glass substrate; forming a cut part in the glass substrate by etching the glass substrate using an etching solution; and removing the first etch protection layer and the second etch protection layer. The second surface is opposite to the first surface.
Abstract:
A laser crystallizing apparatus includes a first light source unit configured to emit a first input light having a linearly polarized laser beam shape. A second light source unit is configured to emit a second input light having a linearly polarized laser beam shape. A polarization optical system is configured to rotate the first input light and/or the second input light at a predetermined rotation angle. An optical system is configured to convert the first input light and the second input light, which pass through the polarization optical system, into an output light. A target substrate is seated on a stage and output light is directed onto the target substrate. A monitoring unit is configured to receive the first input light or the second input light from the polarization optical system and measure a laser beam quality thereof.
Abstract:
A method of manufacturing a display apparatus includes forming a plurality of display units including bending areas on a mother substrate. Each of the plurality of display units include a bending area configured to be bent about a bending axis. A protection film is attached to a lower surface of the mother substrate. The protection film includes a protection film base and an adhesive layer. An opening or a groove is formed corresponding to the bending area of each of the plurality of display units by removing at least a portion of the protection film. The mother substrate and the protection film are cut to separate the plurality of display units from each other. The mother substrate is bent about the bending axis. The removing of the at least a portion of the protection film is performed by a laser beam.
Abstract:
A laser polycrystallization apparatus including: a light source for emitting a laser beam; a diffraction grating for receiving the laser beam from the light source, changing a path and a magnitude of the received laser beam, and outputting the changed laser beam; a light split portion for splitting the laser beam received from the diffraction grating; and a light superposition portion for superposing the split laser beams received from the light split portion and irradiating the superposed split laser beams to a substrate. An angle between the laser beam irradiated to an incidence surface of the diffraction grating from the light source and a line substantially perpendicular to an emission surface of the diffraction grating is an acute angle.
Abstract:
A laser cutting apparatus and a laser cutting method are provided. A laser cutting method includes: preparing an object on a stage; cutting the object into a set shape by relatively moving and irradiating a laser beam along the set shape with respect to the object; and performing uniform heating compensation to reduce accumulation of thermal energy of the laser beam resulting from a change of speed at a shift point where a travelling direction of the laser beam with respect to the object changes.
Abstract:
A method of cutting a substrate includes: forming a first protective layer on a first surface of the substrate; forming a removal area where a portion of the first protective layer is removed by irradiating the first protective layer at the portion of the first protective layer with a first laser beam; and forming a cutting area by removing a portion of the substrate by irradiating the substrate with a second laser beam at the removal area, after irradiating the first protective layer with the first laser beam.
Abstract:
A method of cutting a substrate includes: forming a first protective layer on a first surface of the substrate; forming a removal area where a portion of the first protective layer is removed by irradiating the first protective layer at the portion of the first protective layer with a first laser beam; and forming a cutting area by removing a portion of the substrate by irradiating the substrate with a second laser beam at the removal area, after irradiating the first protective layer with the first laser beam.
Abstract:
A method of manufacturing a deposition mask includes: a splitting process in which a laser beam irradiated from a light source is split into a plurality of laser beams; a scanning process in which the plurality of laser beams are simultaneously scanned onto the mask substrate; and a tuning process in which irradiation states of the plurality of laser beams are finely changed to correspond to shapes of the plurality of pattern holes while the plurality of laser beams are scanned.
Abstract:
A particle removal device includes: a stage on which a target substrate is disposed; an inner case defining a first discharge opening through which the stage is exposed to an internal space of the inner case; an outer case including: a side wall portion surrounding the inner case, a protrusion portion protruded from the side wall portion toward the inner case, and a second discharge opening in fluid connection with the first discharge opening; a suction pump connected to the second discharge opening; an air injector in fluid connection with the internal space; and an intake opening in fluid connection with the first and second discharge openings. A width of the intake opening as a distance between the distal end of the inner case and the distal end of the protrusion portion is smaller than a width of the first discharge opening.
Abstract:
A work table for laser processing includes an upper plate including a plurality of cell regions and at least one groove region that divides the plurality of cell regions. The upper plate includes a plurality of absorption holes that fix a substrate in the plurality of cell regions. A plurality of suction holes collect particles generated during a cutting process performed on the substrate. A lower plate is disposed under the upper plate. The lower plate forms an absorption path that is coupled to the plurality of absorption holes. A suction path is coupled to the plurality of suction holes by combining the lower plate with the upper plate.