Abstract:
Some novel features pertain to an integrated device package (e.g., die package) that includes a package substrate, a die, an encapsulation layer and a first set of metal layers. The package substrate includes a first surface and a second surface. The die is coupled to the first surface of the package substrate. The encapsulation layer encapsulates the die. The first set of metal layers is coupled to a first exterior surface of the encapsulation layer. In some implementations, the first set of metal layers is configured to operate as a die-to-wire connector of the integrated device package. In some implementations, the integrated device package includes a second set of metal layers coupled to the second surface of the package substrate. In some implementations, the integrated device package includes a second set of metal layers coupled to a second exterior surface of the encapsulation layer.
Abstract:
Some implementations provide a semiconductor package structure that includes a package substrate, a first package, an interposer coupled to the first package, and a first set of through via insert (TVI). The first set of TVI is coupled to the interposer and the package substrate. The first set of TVI is configured to provide heat dissipation from the first package. In some implementations, the semiconductor package structure further includes a heat spreader coupled to the interposer. The heat spreader is configured to dissipate heat from the first package. In some implementations, the first set of TVI is further configured to provide an electrical path between the first package and the package substrate. In some implementations, the first package is electrically coupled to the package substrate through the interposer and the first set of TVI. In some implementations, the first set of TVI includes a dielectric layer and a metal layer.
Abstract:
Some novel features pertain to a semiconductor device that includes a substrate, a first cavity that traverses the substrate. The first cavity is configured to be occupied by a interconnect material (e.g., solder ball). The substrate also includes a first metal layer coupled to a first side wall of the first cavity. The substrate further includes a first integrated passive device (IPD) on a first surface of the substrate, the first IPD coupled to the first metal layer. In some implementations, the substrate is a glass substrate. In some implementations, the first IPD is one of at least a capacitor, an inductor and/or a resistor. In some implementations, the semiconductor device further includes a second integrated passive device (IPD) on a second surface of the substrate. The second IPD is coupled to the first metal layer.
Abstract:
Systems and methods for EMC, EMI and ESD testing are described. A probe comprises a center conductor extending along an axis of the probe, a probe tip, and a shield coaxially aligned with the center conductor and configured to provide electromagnetic screening for the probe tip. One or more actuators may change the relative positions of the probe tip and shield with respect to a device under test, thereby enabling control of sensitivity and resolution of the probe.
Abstract:
Mobile phones and other mobile devices communicate wirelessly by transmitting and receiving RF signals. Transmitters and receivers in wireless devices process RF signals in certain frequency ranges or bands. Signals in other frequencies can be blocked or filtered out by, for example, a lumped-element circuit or a lumped-element filter consisting of passive electrical components such as inductors, capacitors, and resistors. A passive component device, or integrated passive device, is one example of a lumped-element filter fabricated with passive components on a die. In a mobile device, a passive component device and one or more integrated circuits or other chips used for signal processing are interconnected by being mounted on (i.e., coupled to) a metallization structure or package substrate in a chip module or multi-chip module. The demand for miniaturization of hand-held mobile devices drives a need for reducing the sizes of chip modules that are inside a mobile device.
Abstract:
An integrated circuit (IC) package comprising a first die, including an active layer opposite a backside surface of the first die supporting a plurality of backside pads is provided. The IC package also incorporates a package substrate coupled to the active layer. The package pads on the package substrate correspond to the plurality of backside pads. A passive device comprising a plurality of wire bonds is coupled to the plurality of backside pads and the plurality of package pads. The passive device may also comprise a plurality of wire bonds coupled to the package pads by through silicon vias (TSVs). Multiple dies may be coupled with die-to-die wire bonds coupled to backside pads on each die.
Abstract:
An integrated circuit (IC) includes a glass substrate and a buried oxide layer. The IC additionally includes a first semiconductor device coupled to the glass substrate. The first semiconductor device includes a first gate and a first portion of a semiconductive layer coupled to the buried oxide layer. The first gate is located between the glass substrate and the first portion of the semiconductive layer and between the glass substrate and the buried oxide layer. The IC additionally includes a second semiconductor device coupled to the glass substrate. The second semiconductor device includes a second gate and a second portion of the semiconductive layer. The second gate is located between the glass substrate and the second portion of the semiconductive layer. The first portion is discontinuous from the second portion.
Abstract:
A three-dimensional (3D) solenoid structure includes a first inductor portion having a first surface and a second surface opposite the first surface. The 3D solenoid structure further includes a first capacitor portion, a first inductor pillar, at least one capacitor pillar, a second inductor portion, a second inductor pillar and a first inductor bonding interface. The first inductor pillar is coupled to the first surface of the first inductor portion. The capacitor pillar(s) is coupled to the first capacitor portion. The second inductor portion includes a first surface and a second surface opposite the first surface. The second inductor pillar is coupled to the first surface of the second inductor portion. The first inductor bonding interface, between the first inductor pillar and the second inductor pillar, couples together the first inductor portion and the second inductor portion.
Abstract:
A tunable matching network is disclosed. In a particular example, the matching network includes at least one first inductor in a signal path of the matching network. The matching network includes at least one second inductor outside of the signal path. The matching network includes one or more switches coupled to the at least one second inductor. The one or more switches are configured to selectively enable mutual coupling of the at least one first inductor and the at least one second inductor.
Abstract:
An integrated circuit device in a wafer level package (WLP) includes ball grid array (BGA) balls fabricated with cavities filled with adhesives for improved solder joint reliability.