Abstract:
A scanning probe detects phase changes of a cantilevered tip proximate to a sample, the oscillations of the cantilevered tip are induced by a lateral bias applied to the sample to quantify the local impedance of the interface normal to the surface of the sample. An ac voltage having a frequency is applied to the sample. The sample is placed at a fixed distance from the cantilevered tip and a phase angle of the cantilevered tip is measured. The position of the cantilevered tip is changed relative to the sample and another phase angle is measured. A phase shift of the deflection of the cantilevered tip is determined based on the phase angles. The impedance of the grain boundary, specifically interface capacitance and resistance, is calculated based on the phase shift and the frequency of the ac voltage. Magnetic properties are measured by applying a dc bias to the tip that cancels electrostatic forces, thereby providing direct measurement of magnetic forces.
Abstract:
Example embodiments relate to methods and apparatuses for aligning a probe for scanning probe microscopy (SPM) to the tip of a pointed sample. One embodiments includes a method for aligning an SPM probe to an apex area of a free-standing tip of a pointed sample. The method includes providing an SPM apparatus that includes the SPM probe; a sample holder; a drive mechanism; and detection, control, and representation tools for acquiring and representing an image of a surface scanned by the SPM probe. The method also includes mounting the sample on the sample holder. Further, the method includes positioning the probe tip of the SPM, determining a 2-dimensional area that includes the pointed sample, performing an SPM acquisition scan, evaluating and acquired image, and placing the SPM probe in a position where it is aligned with an apex area of the free-standing tip of the pointed sample.
Abstract:
The resonance structure is that two rows of ground via holes are placed symmetrically along two sides of the CB-CPW central conductor; each row of the via holes are equally spaced; every via hole connects a top shield plane layer, a first middle layer and a bottom shield plane layer of the magnetic probe; every via hole is placed out of a rectangle gap at the bottom of the magnetic probe; the via holes form a fence. The construction method: 1. constructing a simulation model formed by the magnetic probe and a 50Ω microstrip in a CST® microwave studio; 2. simulation setting; 3. placing via holes along two sides of the central conductor; 4. connecting a 50Ω matching load to the second end of the microstrip and defining the first end as microstrip port1; defining the end on which mount a SMA connector as probe port2; simulating S21.
Abstract:
The present invention provides a cantilever for a scanning type probe microscope, the cantilever including a support portion, a lever portion extending from the support portion, a protrusion portion formed on a free end side of the lever portion, an apex angle of the protrusion portion being an acute angle, and a probe in which a fine wire formed at a distal end of the protrusion portion is coated with a functional film, and a major axis/minor axis ratio of a cross-sectional shape of the probe is smaller than a major axis/minor axis ratio of a cross-sectional shape of the fine wire.
Abstract:
A sensing probe may be formed of a diamond material comprising one or more spin defects that are configured to emit fluorescent light and are located no more than 50 nm from a sensing surface of the sensing probe. The sensing probe may include an optical outcoupling structure formed by the diamond material and configured to optically guide the fluorescent light toward an output end of the optical outcoupling structure. An optical detector may detect the fluorescent light that is emitted from the spin defects and that exits through the output end of the optical outcoupling structure after being optically guided therethrough. A mounting system may hold the sensing probe and control a distance between the sensing surface of the sensing probe and a surface of a sample while permitting relative motion between the sensing surface and the sample surface.
Abstract:
A magnetic head inspection method is provided with the step that an area smaller than a half of a scanning and measurement area of a magnetic probe in a cantilever unit of the MFM is set as a scanning and measurement area on a surface of a recording portion of the magnetic head that is scanned by the AFM, so as to greatly reduce the inspection time (tact time) of the AFM.
Abstract:
A modified hybrid Hall effect device is provided which is the combination of a conventional Hall effect device and a second Hall effect device having a Hall plate coupled to a ferromagnetic layer. The hybrid Hall effect device can be used to determine the independent magnetic field vector components comprising a vector magnetic field, such as for determining the {circumflex over (x)} and the {circumflex over (z)} components of a magnetic field, or for measuring the total magnitude of a vector magnetic field of any orientation. The modified Hall Effect device can be adapted for use as a magnetic field sensor for the detection of macroscopic objects that have associated magnetic fields, or for microscopic objects that have been tagged by microscopic magnetic particles. In one specific form, a plurality of hybrid Hall devices are electrically connected together to form an array in which a plurality of rows of hybrid Hall devices are electrically coupled to each other along a current axis, and the array is used for the detection of microscopic objects.
Abstract:
A carbon nanotube which exhibits ferromagnetism without a ferromagnetic metal imparted thereto and also has high thermal stability is provided. The carbon nanotube is characterized by being doped with nitrogen (which differs from carbon in valence electron) such that the doped nitrogen is segregated in a strip form at one end of the carbon nanotube. The thus doped nitrogen causes the carbon nanotube to have a difference in electron density and to exhibit ferromagnetism. The present invention makes it possible to provide a carbon nanotube exhibiting ferromagnetism without the necessity of imparting any magnetic metal thereto.
Abstract:
In a method of measuring an exchange force between a specimen and a probe, the specimen and probe are faced to each other with a distance within a close proximity or RKKY-type exchange interaction region from a distance at which conduction electron clouds begin to be overlapped with each other to a distance at which localized electron clouds are not substantially overlapped with each other, a relative displacement of the specimen and probe is detected to measure a first force under such a condition that directions of magnetic moments of said specimen surface and probe are in parallel with each other to derive a first force and under such a condition that directions of magnetic moments of said specimen surface and probe are in anti-parallel with each other to derive a second force. An exchange force is derived as a difference between said first and second forces. Magnetic property of the specimen can be evaluated on the basis of the thus measured exchange force.
Abstract:
A probe for use in an alternating current magnetic force microscopy (MFM) system is located on the free end of a cantilever in the MFM system. The probe has a pair of magnetic poles that form part of a magnetic yoke and a patterned electrically conductive coil wound through the yoke. The probe includes a probe tip that has a magnetic surface layer that is magnetically coupled to one of the poles and extends from it. When alternating current from the MFM system is passed through the probe coil the magnetization direction of the probe tip correspondingly alternates. The interaction of these alternating magnetic fields from the probe tip with the magnetic fields emanating from the sample whose magnetic fields are to be measured causes the cantilever to deflect between two extreme positions. The probe can be formed from a portion of a disk drive air-bearing slider with a patterned thin film inductive write head on its trailing end by growing the probe tip from the slider's air-bearing surface so as to be in contact with the gap and one of the poles of the write head. The probe can also be part of an integrated single-piece structure that includes the cantilever, probe body and probe tip which are formed using conventional thin film deposition and lithographic processes.