Abstract:
A sensing probe may be formed of a diamond material comprising one or more spin defects that are configured to emit fluorescent light and are located no more than 50 nm from a sensing surface of the sensing probe. The sensing probe may include an optical outcoupling structure formed by the diamond material and configured to optically guide the fluorescent light toward an output end of the optical outcoupling structure. An optical detector may detect the fluorescent light that is emitted from the spin defects and that exits through the output end of the optical outcoupling structure after being optically guided therethrough. A mounting system may hold the sensing probe and control a distance between the sensing surface of the sensing probe and a surface of a sample while permitting relative motion between the sensing surface and the sample surface.
Abstract:
A scanning tunneling microscopy based potentiometry system and method for the measurements of the local surface electric potential is presented. A voltage compensation circuit based on this potentiometry system and method is developed and employed to maintain a desired tunneling voltage independent of the bias current flow through the film. The application of this potentiometry system and method to the local sensing of the spin Hall effect is outlined herein, along with the experimental results obtained.
Abstract:
A dispensing device has a cantilever comprising a plurality of thin films arranged relative to one another to define a microchannel in the cantilever and to define at least portions of a dispensing microtip proximate an end of the cantilever and communicated to the microchannel to receive material therefrom. The microchannel is communicated to a reservoir that supplies material to the microchannel. One or more reservoir-fed cantilevers may be formed on a semiconductor chip substrate. A sealing layer preferably is disposed on one of the first and second thin films and overlies outermost edges of the first and second thin films to seal the outermost edges against material leakage. Each cantilever includes an actuator, such as for example a piezoelectric actuator, to impart bending motion thereto. The microtip includes a pointed pyramidal or conical shaped microtip body and an annular shell spaced about the pointed microtip body to define a material-dispensing annulus thereabout. The working microtip may be used to dispense material onto a substrate, to probe a surface in scanning probe microscopy, to apply an electrical stimulus or record an electrical response on a surface in the presence of a local environment created around the tip by the material dispensed from the tip or to achieve other functions.
Abstract:
A dispensing device has a cantilever comprising a plurality of thin films arranged relative to one another to define a microchannel in the cantilever and to define at least portions of a dispensing microtip proximate an end of the cantilever and communicated to the microchannel to receive material therefrom. The microchannel is communicated to a reservoir that supplies material to the microchannel. One or more reservoir-fed cantilevers may be formed on a semiconductor chip substrate. A sealing layer preferably is disposed on one of the first and second thin films and overlies outermost edges of the first and second thin films to seal the outermost edges against material leakage. Each cantilever includes an actuator, such as for example a piezoelectric actuator, to impart bending motion thereto. The microtip includes a pointed pyramidal or conical shaped microtip body and an annular shell spaced about the pointed microtip body to define a material-dispensing annulus thereabout. The working microtip may be used to dispense material onto a substrate, to probe a surface in scanning probe microscopy, to apply an electrical stimulus or record an electrical response on a surface in the presence of a local environment created around the tip by the material dispensed from the tip or to achieve other functions.
Abstract:
A diamond scanning element, especially for an imaging application, includes a support and a pillar extending from the support. The pillar has a longitudinal axis and the pillar includes a tip with a tapered lateral section with a, preferably constantly, increasing curvature. The tip includes a sensor element, which is a defect, and a flat end facet extending toward the axis with a gradient of less than 10%.
Abstract:
Micro magnetic trap comprising a holder and a sample cell on said holder (5); means for providing a controllable homogeneous magnetic field (3) surrounding the sample cell; a modified micro-cantilever comprising a cantilever (1) having dimensions in the micron range and at least three paramagnetic microbeads with a diameter from 1 to 3 microns (2) attached to a bendable tip of the micro-cantilever such that they form a triangular arrangement; means for measuring the deflection of the micro-cantilever when the latter is in use (4). The trap does not require a specific surface functionalization in order to ensure an appropriate and selective linkage to a particular molecule.
Abstract:
A sensing probe may be formed of a diamond material comprising one or more spin defects that are configured to emit fluorescent light and are located no more than 50 nm from a sensing surface of the sensing probe. The sensing probe may include an optical outcoupling structure formed by the diamond material and configured to optically guide the fluorescent light toward an output end of the optical outcoupling structure. An optical detector may detect the fluorescent light that is emitted from the spin defects and that exits through the output end of the optical outcoupling structure after being optically guided therethrough. A mounting system may hold the sensing probe and control a distance between the sensing surface of the sensing probe and a surface of a sample while permitting relative motion between the sensing surface and the sample surface.
Abstract:
A magnetic profile measuring device which scans on a surface of a specimen by a magnetized probe on a tip of a driven cantilever, detects vibration of the cantilever, and generates a magnetic field distribution image of the area, the device including: the cantilever having the probe equipped on tip thereof; a driver driving the cantilever; an alternating-current magnetic field generator periodically reversing the magnetic polarity of the probe; a vibration sensor detecting vibration of the probe; a demodulator demodulating from a detection signal of the vibration sensor a magnetic signal corresponding to an alternating magnetic force between the probe and the specimen; a scanning mechanism; a data storage storing an initial data for each coordinate of the scanning area; a modified data generator generating a plurality of data by modifying the phase of the initial data; and an image display device.
Abstract:
A polarization microscope optically detects the effect of the magnetic field from a sub-optical resolution magnetic structure on a magneto-optical transducer. The magneto-optical transducer includes a magnetic layer with a magnetization that is changed by the magnetic field produced by the magnetic structure. The saturation field of the magnetic layer is sufficiently lower than the magnetic field produced by the magnetic structure that the area of magnetization change in the magnetic layer is optically resolvable by the polarization microscope. A probe may be used to provide a current to the sample to produce the magnetic field. By analyzing the optically detected magnetization, one or more characteristics of the sample may be determined. A magnetic recording storage layer may be deposited over the magnetic layer, where a magnetic field produced by the sample is written to the magnetic recording storage layer to effect the magnetization of the magnetic layer.
Abstract:
The invention relates to a probe for a magnetic force microscope, comprising a movable cantilever placed in the plane of a wafer and a tip placed substantially at right angles to the cantilever, wherein the cantilever is able to move and its oscillation direction is in the wafer plane, and the tip lies virtually in or parallel to this wafer plane.