NANOSCALE SCANNING SENSORS
    1.
    发明申请

    公开(公告)号:US20220413007A1

    公开(公告)日:2022-12-29

    申请号:US17675156

    申请日:2022-02-18

    Abstract: A sensing probe may be formed of a diamond material comprising one or more spin defects that are configured to emit fluorescent light and are located no more than 50 nm from a sensing surface of the sensing probe. The sensing probe may include an optical outcoupling structure formed by the diamond material and configured to optically guide the fluorescent light toward an output end of the optical outcoupling structure. An optical detector may detect the fluorescent light that is emitted from the spin defects and that exits through the output end of the optical outcoupling structure after being optically guided therethrough. A mounting system may hold the sensing probe and control a distance between the sensing surface of the sensing probe and a surface of a sample while permitting relative motion between the sensing surface and the sample surface.

    Nanotipped device and method
    3.
    发明授权
    Nanotipped device and method 有权
    纳米装置和方法

    公开(公告)号:US09278852B2

    公开(公告)日:2016-03-08

    申请号:US13136246

    申请日:2011-07-26

    Abstract: A dispensing device has a cantilever comprising a plurality of thin films arranged relative to one another to define a microchannel in the cantilever and to define at least portions of a dispensing microtip proximate an end of the cantilever and communicated to the microchannel to receive material therefrom. The microchannel is communicated to a reservoir that supplies material to the microchannel. One or more reservoir-fed cantilevers may be formed on a semiconductor chip substrate. A sealing layer preferably is disposed on one of the first and second thin films and overlies outermost edges of the first and second thin films to seal the outermost edges against material leakage. Each cantilever includes an actuator, such as for example a piezoelectric actuator, to impart bending motion thereto. The microtip includes a pointed pyramidal or conical shaped microtip body and an annular shell spaced about the pointed microtip body to define a material-dispensing annulus thereabout. The working microtip may be used to dispense material onto a substrate, to probe a surface in scanning probe microscopy, to apply an electrical stimulus or record an electrical response on a surface in the presence of a local environment created around the tip by the material dispensed from the tip or to achieve other functions.

    Abstract translation: 分配装置具有悬臂,其包括相对于彼此布置的多个薄膜,以在悬臂中限定微通道并且在靠近悬臂的端部处限定分配微尖端的至少一部分并且连通到微通道以从其接收材料。 微通道被传送到向微通道供应材料的储存器。 可以在半导体芯片基板上形成一个或多个储存器馈电悬臂。 密封层优选地设置在第一和第二薄膜中的一个上,并且覆盖在第一和第二薄膜的最外边缘上,以密封最外边缘以抵抗材料泄漏。 每个悬臂包括致动器,例如压电致动器,以向其施加弯曲运动。 微尖头包括尖角金字塔形或圆锥形的微尖头本体和围绕尖锐的微尖头体间隔开的环形壳体,以在其周围限定出物料分配环。 工作微尖端可以用于将材料分配到基底上,在扫描探针显微镜中探测表面,以在由分配的材料在尖端周围产生的局部环境的存在下施加电刺激或记录电响应 从尖端或实现其他功能。

    Nanotipped device and method
    4.
    发明授权
    Nanotipped device and method 有权
    纳米装置和方法

    公开(公告)号:US07997123B2

    公开(公告)日:2011-08-16

    申请号:US11820328

    申请日:2007-06-19

    Abstract: A dispensing device has a cantilever comprising a plurality of thin films arranged relative to one another to define a microchannel in the cantilever and to define at least portions of a dispensing microtip proximate an end of the cantilever and communicated to the microchannel to receive material therefrom. The microchannel is communicated to a reservoir that supplies material to the microchannel. One or more reservoir-fed cantilevers may be formed on a semiconductor chip substrate. A sealing layer preferably is disposed on one of the first and second thin films and overlies outermost edges of the first and second thin films to seal the outermost edges against material leakage. Each cantilever includes an actuator, such as for example a piezoelectric actuator, to impart bending motion thereto. The microtip includes a pointed pyramidal or conical shaped microtip body and an annular shell spaced about the pointed microtip body to define a material-dispensing annulus thereabout. The working microtip may be used to dispense material onto a substrate, to probe a surface in scanning probe microscopy, to apply an electrical stimulus or record an electrical response on a surface in the presence of a local environment created around the tip by the material dispensed from the tip or to achieve other functions.

    Abstract translation: 分配装置具有悬臂,其包括相对于彼此布置的多个薄膜,以在悬臂中限定微通道并且在靠近悬臂的端部处限定分配微尖端的至少一部分并且连通到微通道以从其接收材料。 微通道被传送到向微通道供应材料的储存器。 可以在半导体芯片基板上形成一个或多个储存器馈电悬臂。 密封层优选地设置在第一和第二薄膜中的一个上,并且覆盖在第一和第二薄膜的最外边缘上,以密封最外边缘以抵抗材料泄漏。 每个悬臂包括致动器,例如压电致动器,以向其施加弯曲运动。 微尖头包括尖角金字塔形或圆锥形的微尖头本体和围绕尖锐的微尖头体间隔开的环形壳体,以在其周围限定出物料分配环。 工作微尖端可以用于将材料分配到基底上,在扫描探针显微镜中探测表面,以在由分配的材料在尖端周围产生的局部环境的存在下施加电刺激或记录电响应 从尖端或实现其他功能。

    MAGNETIC PROFILE MEASURING DEVICE AND METHOD FOR MEASURING MAGNETIC PROFILE FOR DIRECT-CURRENT (DC) MAGNETIC FIELD
    8.
    发明申请
    MAGNETIC PROFILE MEASURING DEVICE AND METHOD FOR MEASURING MAGNETIC PROFILE FOR DIRECT-CURRENT (DC) MAGNETIC FIELD 审中-公开
    磁性轮廓测量装置及用于测量直流(DC)磁场的磁轮廓的方法

    公开(公告)号:US20150323562A1

    公开(公告)日:2015-11-12

    申请号:US14347407

    申请日:2012-09-25

    CPC classification number: G01Q30/04 G01Q60/54 G01R33/0385

    Abstract: A magnetic profile measuring device which scans on a surface of a specimen by a magnetized probe on a tip of a driven cantilever, detects vibration of the cantilever, and generates a magnetic field distribution image of the area, the device including: the cantilever having the probe equipped on tip thereof; a driver driving the cantilever; an alternating-current magnetic field generator periodically reversing the magnetic polarity of the probe; a vibration sensor detecting vibration of the probe; a demodulator demodulating from a detection signal of the vibration sensor a magnetic signal corresponding to an alternating magnetic force between the probe and the specimen; a scanning mechanism; a data storage storing an initial data for each coordinate of the scanning area; a modified data generator generating a plurality of data by modifying the phase of the initial data; and an image display device.

    Abstract translation: 磁性剖面测量装置,其通过在驱动悬臂的尖端上的磁化探针在试样的表面上扫描,检测悬臂的振动,并产生该区域的磁场分布图像,该装置包括:悬臂具有 探针装在其顶端; 驾驶悬臂的司机 交流磁场发生器周期性地反转探针的磁极性; 检测探头的振动的振动传感器; 解调器,根据所述振动传感器的检测信号,对应于所述探针与所述试样之间的交变磁力的磁信号进行解调; 扫描机制; 存储扫描区域的每个坐标的初始数据的数据存储器; 修改的数据生成器,通过修改初始数据的相位来生成多个数据; 和图像显示装置。

    Magneto-Optical Detection of a Field Produced by a Sub-Resolution Magnetic Structure
    9.
    发明申请
    Magneto-Optical Detection of a Field Produced by a Sub-Resolution Magnetic Structure 有权
    通过分辨率磁性结构产生的磁场的磁光检测

    公开(公告)号:US20100170017A1

    公开(公告)日:2010-07-01

    申请号:US12649145

    申请日:2009-12-29

    Inventor: Juergen Heidmann

    CPC classification number: G11B5/455 G01R33/032 G02B21/0092

    Abstract: A polarization microscope optically detects the effect of the magnetic field from a sub-optical resolution magnetic structure on a magneto-optical transducer. The magneto-optical transducer includes a magnetic layer with a magnetization that is changed by the magnetic field produced by the magnetic structure. The saturation field of the magnetic layer is sufficiently lower than the magnetic field produced by the magnetic structure that the area of magnetization change in the magnetic layer is optically resolvable by the polarization microscope. A probe may be used to provide a current to the sample to produce the magnetic field. By analyzing the optically detected magnetization, one or more characteristics of the sample may be determined. A magnetic recording storage layer may be deposited over the magnetic layer, where a magnetic field produced by the sample is written to the magnetic recording storage layer to effect the magnetization of the magnetic layer.

    Abstract translation: 偏振显微镜光学地检测来自副光学分辨率磁性结构的磁场对磁光变换器的影响。 磁光换能器包括具有由磁结构产生的磁场改变的磁化的磁性层。 磁性层的饱和磁场足够低于由磁性结构产生的磁场,使得磁性层中磁化强度的变化区域可通过偏振显微镜光学解析。 探针可用于向样品提供电流以产生磁场。 通过分析光学检测的磁化,可以确定样品的一个或多个特性。 可以在磁性层上沉积磁记录存储层,其中将样品产生的磁场写入磁记录存储层以实现磁性层的磁化。

Patent Agency Ranking