Abstract:
A magnetic field measuring device including: a vibrational probe unit having a probe that includes one or more material(s) whose intensity of magnetization is proportionate to an external magnetic field, a mechanical vibration source for the probe; a vibration detector detecting a vibration frequency and amplitude of the probe; an alternating-current magnetic field generator applying to the probe an alternating-current magnetic field; a direct-current external magnetic field generator applying a direct-current external magnetic field to the probe; a frequency modulation detector detecting frequency modulation occurring to the mechanical vibration of the probe; a direct-current external magnetic field controller adjusting the intensity of the direct-current external magnetic field applied to the probe; and a direct-current magnetic field determination unit determining a value of the direct-current magnetic field originating from a specimen.
Abstract:
In a method of manufacturing a probe with a minute aperture, the probe is coated with conductive material, a tip of the probe is brought into contact with a conductive substrate and a voltage is applied between the probe and the substrate to remove the coating material at the tip of the probe and form the minute aperture at the tip of the probe. The thus-fabricated probe can be used in a scanning near-field optical microscope for observing an object on the basis of a change in intensity of near-field light and an information recording and/or reproducing apparatus for reproducing information recorded in a record medium by using near-field light.
Abstract:
In an apparatus for measuring an exchange force between a specimen and a probe, the specimen and probe are faced to each other with a distance within a close proximity or RKKY-type exchange interaction region from a distance at which conduction electron clouds begin to be overlapped with each other to a distance at which localized electron clouds are not substantially overlapped with each other. In order to prevent the probe from being attracted to the specimen by a force between the specimen and the force, a piezoelectric element is provided on a cantilever and a control signal supplied to the piezoelectric element is produced in accordance with a displacement of the cantilever to control a spring constant of the cantilever. The exchange force between the specimen and the probe is calculated from the control signal supplied to the piezoelectric element.
Abstract:
Methods for referencing related magnetic head microscopy scans to reduce processing requirements for high resolution imaging are provided. One such method includes performing a low resolution pole tip recession scan of a pole tip area of a magnetic head, performing a high resolution writer pole recession scan of a writer pole area of the magnetic head, preparing a portion of the low resolution scan for alignment, performing a rough leveling of the high resolution scan, aligning the portion of the low resolution scan and the high resolution scan using pattern recognition and a database of features, subtracting the high resolution scan from the aligned portion of the low resolution scan, and leveling the high resolution scan based on a result of the subtraction.
Abstract:
The invention relates to a probe for a magnetic force microscope, comprising a movable cantilever placed in the plane of a wafer and a tip placed substantially at right angles to the cantilever, wherein the cantilever is able to move and its oscillation direction is in the wafer plane, and the tip lies virtually in or parallel to this wafer plane.
Abstract:
A silicon nitride film is formed all over the surface of a cantilever prepared as including a support portion made by processing single-crystal silicon wafer, a lever portion extended from the support portion, formed with a controlled thickness from single-crystal silicon, and a probe portion made of single-crystal silicon disposed toward the free end of the lever portion with having its probe axis perpendicular to the lever portion, so as to have a greater film thickness on the side face of the probe portion toward the free end of the lever portion, thereby constructing SPM cantilever of configuration where the terminal end portion of the probe portion is tilted toward the free end by a certain angle θ with respect to the probe axis. The SPM cantilever thereby can be achieved as capable of measuring surface conditions always at high resolution correspondingly to measuring condition or sample shape.
Abstract:
In a method of manufacturing a probe with a minute aperture, the probe is coated with conductive material, a tip of the probe is brought into contact with a conductive substrate and a voltage is applied between the probe and the substrate to remove the coating material at the tip of the probe and form the minute aperture at the tip of the probe. The thus-fabricated probe can be used in a scanning near-field optical microscope for observing an object on the basis of a change in intensity of near-field light and an information recording and/or reproducing apparatus for reproducing information recorded in a record medium by using near-field light.
Abstract:
A method and apparatus for precision machining a surface suitable for use as a data recorder, using a scanning probe microscope (SPM) capable of observing an electrically insulating surface. The SPM includes a probe which comprises a tip having a pointed end, and also including a conductive layer applied on a surface of the tip. The tip is brought into close proximity to the surface which is to be machined and a machining voltage is applied between the tip and the surface to machine the surface.
Abstract:
Magnetic Force Microscopy (MFM) probe tips that provide enhanced spatial resolution and methods of manufacture are provided. In one aspect, two or more magnetically-decoupled layers may be deposited on an AFM probe in order to create an active magnetic region at about the apex of the probe tip with dimensions less than about 10 nanometers. In another aspect, nanoscale patterning techniques may be employed to fabricate probe tips that possess plateau features. These plateau features may serve as substrates for the deposition of magnetic films having properties similar to magnetic recording media. Machining techniques, such as Focused Ion Beam (FIB) may be further employed to reduce the size of the magnetic materials deposited upon the substrate. Beneficially, because the plateaus of the substrate are substantially flat and of known geometry, and the magnetic properties of magnetic films deposited on flat surfaces are similar to those deposited upon the plateau, the magnetization of the MFM probe tips may be determined to high accuracy. In this manner, fine control over the magnetic properties of MFM probe tips may be achieved, providing enhanced MFM resolution.
Abstract:
Magnetic Force Microscopy (MFM) probe tips that provide enhanced spatial resolution and methods of manufacture are provided. In one aspect, two or more magnetically-decoupled layers may be deposited on an AFM probe in order to create an active magnetic region at about the apex of the probe tip with dimensions less than about 10 nanometers. In another aspect, nanoscale patterning techniques may be employed to fabricate probe tips that possess plateau features. These plateau features may serve as substrates for the deposition of magnetic films having properties similar to magnetic recording media. Machining techniques, such as Focused Ion Beam (FIB) may be further employed to reduce the size of the magnetic materials deposited upon the substrate. Beneficially, because the plateaus of the substrate are substantially flat and of known geometry, and the magnetic properties of magnetic films deposited on flat surfaces are similar to those deposited upon the plateau, the magnetization of the MFM probe tips may be determined to high accuracy. In this manner, fine control over the magnetic properties of MFM probe tips may be achieved, providing enhanced MFM resolution.