Abstract:
An oxygen concentrator may rely on a pressure swing adsorption process to produce an oxygen enriched gas stream from canisters filled with granules capable of separation of oxygen from an air stream. The adsorption process uses a cyclical pressurization and venting of the canisters to generate an oxygen enriched gas stream. During venting of the canisters, use of oxygen as a purge gas may improve the efficiency and lifetime of the oxygen concentrator.
Abstract:
The present invention generally relates to, amongst other things, systems, devices, materials, and methods that can improve the accuracy and/or precision of nitric oxide therapy by, for example, reducing the dilution of inhaled nitric oxide (NO). As described herein, NO dilution can occur because of various factors. To reduce the dilution of an intended NO dose, various exemplary nasal cannulas, pneumatic configurations, methods of manufacturing, and methods of use, etc. are disclosed.
Abstract:
In this disclosure, a method is described wherein the method comprises mixing a therapeutic gas or a therapeutic liquid or a combination thereof and a liquid carrier in a high shear device to produce a dispersion; and administering the produced dispersion intravenously to a patient; wherein the produced dispersion contains nanobubbles of the therapeutic gas or droplets of the therapeutic liquid with a mean diameter of less than about 1.5 μm. In this disclosure, a method is described wherein the method comprises mixing a therapeutic gas or a therapeutic liquid or a combination thereof and a liquid carrier in a high shear device to produce a therapeutic fluid, wherein said therapeutic fluid is a solution, a dispersion, or combination thereof and administering the produced therapeutic fluid intravenously to a patient; wherein the solution is supersaturated with the therapeutic gas, the therapeutic liquid, or combination thereof.
Abstract:
A gas delivery system including a gas delivery device (100), a control module (200) and a gas delivery mechanism is described. An exemplary gas delivery device includes a valve (107) assembly with a valve and circuit including a memory (134), a processor (122) and a transceiver (120) in communication with the memory. The memory may include gas data such as gas identification, gas expiration and gas concentration. The transceiver on the circuit of the valve assembly may send wireless optical line-of-sight signals to communicate the gas data to a control module. Exemplary gas delivery mechanisms include a ventilator (400) and a breathing circuit (410). Methods of administering gas are also described.
Abstract:
The invention provides a combination of a micro pump 27 or a micro valve with a vibrating mesh nebuliser 2. This is powered by a controller 3. The controller 3 may have modifications to provide the electrical drive mechanism for the pump 27 in addition to fulfilling the aerosol/nebuliser drive requirements. In one case the system is used for humidifying gas in a ventilator circuit. A humidifying agent (sterile water or sterile saline) is aerosolised and then delivered to a ventilator circuit 100 coupled to the respiratory system of a patient.
Abstract:
A method for humidifying gas in a ventilator circuit 100, 101, 102, 105, 106 comprises aerosolising a humidifying agent such as water or saline using an aerosol generator 2 and delivering the aerosolised humidifying agent to the inspiration line 101 of the ventilator circuit coupled to the respiratory system of a patient. The aerosol generator 2 comprises a vibratable member 40 having a plurality of apertures extending between a first surface and a second surface. A controller 3 controls the operation of aerosol generator 2, for example in response to the flow of air in the inspiration line 101 as detected by a sensor 11.
Abstract:
Extracorporeal systems and methods for treating blood-borne diseases in a subject or for developing drugs to treat blood-borne diseases include various environmental and treatment modules that can be tailored to a specific disease or infection. In certain embodiments of the systems and methods, a blood sample is treated with hydrostatic pressure, a pulsed electrical field, a pharmaceutical agent, microwave, centrifugation, sonification, radiation, or a combination thereof, under environmental conditions that are effective for the treatment.
Abstract:
Various embodiments of the present disclosure provide systems, methods and devices for respiratory support. As one example, a ventilation system is disclosed that includes a computer readable medium including instructions executable by a processor to receive a measured pressure value and a net flow value. A patient effort value is calculated based on a relationship between patient effort, the measured pressure value and the net flow value. The instructions are further executable to calculate a gas delivery metric based on the computed patient effort to obtain a predetermined patient effort. Gas is then caused to be delivered consistent with the gas delivery metric.
Abstract:
An intubation device is provided. An intubation device comprises a movable guide configured to guide an insertion of an endotracheal tube into a trachea of a patient, the guide having a guide extension and a guide tip; an external trachea identifier source external to the trachea and disposed on the patient during an intubation, wherein the trachea identifier source generates and transmits a signal; at least one trachea condition sensor disposed on the guide tip to detect the signal generated by the trachea identifier source; and a guide control device operatively coupled to the guide, the guide control device configured to move the guide into the trachea in response to the detected signal.
Abstract:
It has been discovered that high amplitude, low frequency, broadband spectrum pressure oscillations of sufficient time duration can help stabilize lung volumes and improve gas exchange in a patient receiving ventilation assistance by helping to recruit and stabilize alveoli. A novel device is presented which can produce pressure oscillations having high amplitudes, a low broad-band frequency spectrum and long time duration. Additionally, the device can maintain a patient's mean airway pressure at one or more controlled levels. The device can control the oscillatory amplitude, frequency range and composition, time duration, and mean airway pressure levels by adjusting certain device parameters, such as the angle and depth of the device in a fluid. A device and mechanical system for remotely adjusting and measuring the angle of the device in a fluid are also disclosed. Furthermore, a device and system are disclosed that can deliver pressure oscillations having high amplitudes, a low broad-band frequency spectrum, long time duration, and multiple mean airway inspiratory and expiratory pressure levels. The device and system also provide means for controlling respiration timing in a patient, including: breaths per minute, inspiratory time, and the ratio of inspiratory to expiratory time.