Abstract:
A semiconductor device includes a first transistor and a second transistor. The first transistor includes a first nanowire extending through a first gate electrode and between first source and drain regions. The second transistor includes a second nanowire extending through a second gate electrode and between a second source and drain regions. The first nanowire has a first size in a first direction and a second size in a second direction, and the second nanowire has a second size in the first direction and substantially the second size in the second direction. The first nanowire has a first on current and the second nanowire has a second on current. The on current of the first nanowire may be substantially equal to the on current of the second nanowire based on a difference between the sizes of the first and second nanowires. In another arrangement, the on currents may be different.
Abstract:
A semiconductor device includes at least one nanowire that is disposed over a substrate, extends to be spaced apart from the substrate, and includes a channel region, a gate that surrounds at least a part of the channel region, and a gate dielectric film that is disposed between the channel region and the gate. A source/drain region that contacts one end of the at least one nanowire is formed in a semiconductor layer that extends from the substrate to the one end of the at least one nanowire. Insulating spacers are formed between the substrate and the at least one nanowire. The insulating spacers are disposed between the gate and the source/drain region and are formed of a material that is different from a material of the gate dielectric film.
Abstract:
A semiconductor device includes a plurality of active fins defined by an isolation layer on a substrate, a gate structure on the active fins and the isolation layer, and a gate spacer structure covering a sidewall of the gate structure. A sidewall of the gate structure includes first, second, and third regions having first, second, and third slopes, respectively. The second slope increases from a bottom toward a top of the second region. The second slope has a value at the bottom of the second region less than the first slope. The third slope is greater than the second slope.
Abstract:
A fin field effect transistor includes a first fin structure and a second fin structures both protruding from a substrate, first and second gate electrodes on the first and second fin structures, respectively, and a gate dielectric layer between each of the first and second fin structures and the first and second gate electrodes, respectively. Each of the first and second fin structures includes a buffer pattern on the substrate, a channel pattern on the buffer pattern, and an etch stop pattern provided between the channel pattern and the substrate. The etch stop pattern includes a material having an etch resistivity greater than that of the buffer pattern.
Abstract:
Tunneling field effect transistors are provided. The tunneling field effect transistor includes a source region, a drain region, and a channel region disposed between the source region and the drain region. The channel region includes a first region adjacent to the source region and a second region adjacent to the drain region. A first energy band gap of the first region is lower than a second energy band gap of the second region, and the first region has a direct energy band gap.
Abstract:
Provided is a semiconductor device comprising a substrate including a first area and a second area, first through third crystalline layers sequentially stacked on the first area and having first through third lattice constants, respectively, a first gate electrode formed on the third crystalline layer, fourth and fifth crystalline layers sequentially stacked on the second area and having fourth and fifth lattice constants, respectively, and a second gate electrode formed on the fifth crystalline layer, wherein the third lattice constant is greater than the second lattice constant, the second lattice constant is greater than the first lattice constant, and the fifth lattice constant is smaller than the fourth lattice constant.