Abstract:
Disclosed is a semiconductor device including a conductive pattern on a substrate, a passivation layer on the substrate and including an opening that partially exposes the conductive pattern, and a pad structure in the opening of the passivation layer and connected to the conductive pattern. The pad structure includes a first metal layer that fills the opening of the passivation layer and has a width greater than that of the opening, and a second metal layer on the first metal layer. The first metal layer has a first thickness at an outer wall of the first metal layer, a second thickness on a top surface of the passivation layer, and a third thickness on a top surface of the conductive pattern. The second thickness is greater than the first thickness, and the third thickness is greater than the second thickness.
Abstract:
Semiconductor devices including a through via structure and methods of forming the same are provided. The semiconductor devices may include a semiconductor substrate including a first surface and a second surface opposite the first surface, a front insulating layer on the first surface of the semiconductor substrate, a back insulating layer on the second surface of the semiconductor substrate, a through via structure extending through the back insulating layer, the semiconductor substrate, and the front insulating layer, a via insulating layer on a side surface of the through via structure, and a contact structure extending through the front insulating layer. The through via structure may include a first region and a second region disposed on the first region. The second region may include a first doping element, and the first region may be substantially free of the first doping element.
Abstract:
Disclosed are semiconductor packages and methods of fabricating the same. The semiconductor package includes a redistribution substrate including redistribution line patterns in a dielectric layer, and a semiconductor chip on the redistribution substrate. The semiconductor chip includes chip pads electrically connected to the redistribution line patterns. Each of the redistribution line patterns has a substantially planar top surface and a nonplanar bottom surface. Each of the redistribution line patterns includes a central portion and edge portions on opposite sides of the central portion. Each of the redistribution line patterns has a first thickness as a minimum thickness at the central portion and a second thickness as a maximum thickness at the edge portions.
Abstract:
There are provided semiconductor packages including a redistribution substrate and a semiconductor chip mounted on the redistribution substrate. The redistribution substrate may include a lower protective layer, a first conductive pattern disposed on the lower protective layer, a first insulating layer surrounding the first conductive pattern and disposed on the lower protective layer, and a second insulating layer disposed on the first insulating layer. The first insulating layer may include a first upper surface that includes a first flat portion extending parallel to an upper surface of the lower protective layer, and a first recess facing the lower protective layer and in contact with the first conductive pattern. The first recess may be directly connected to the first conductive pattern.
Abstract:
Disclosed are semiconductor packages and methods of fabricating the same. The semiconductor package includes a redistribution substrate including redistribution line patterns in a dielectric layer, and a semiconductor chip on the redistribution substrate. The semiconductor chip includes chip pads electrically connected to the redistribution line patterns. Each of the redistribution line patterns has a substantially planar top surface and a nonplanar bottom surface. Each of the redistribution line patterns includes a central portion and edge portions on opposite sides of the central portion. Each of the redistribution line patterns has a first thickness as a minimum thickness at the central portion and a second thickness as a maximum thickness at the edge portions.
Abstract:
A method of manufacturing a semiconductor package including forming a photoresist pattern on a first surface of an interposer substrate. The interposer substrate includes an electrode zone and a scribe line zone. The interposer substrate is etched using the photoresist pattern as a mask to form a first opening and a second opening respectively on the electrode zone and the scribe line zone. An insulation layer and a conductive layer are formed on the first surface of the interposer substrate. A width of the second opening is smaller than a width of the first opening. The insulation layer contacts each of the first surface of the interposer substrate, an inner surface of the first opening, and an inner surface of the second opening.
Abstract:
Semiconductor devices, and methods of fabricating a semiconductor device, include forming a via hole through a first surface of a substrate, the via hole being spaced apart from a second surface facing the first surface, forming a first conductive pattern in the via hole, forming an insulating pad layer on the first surface of the substrate, the insulating pad having an opening exposing the first conductive pattern, performing a thermal treatment on the first conductive pattern to form a protrusion protruding from a top surface of the first conductive pattern toward the opening, and then, forming a second conductive pattern in the opening.
Abstract:
Provided are semiconductor devices with a through electrode and methods of fabricating the same. The methods may include forming a via hole at least partially penetrating a substrate, the via hole having an entrance provided on a top surface of the substrate, forming a via-insulating layer to cover conformally an inner surface of the via hole, forming a buffer layer on the via-insulating layer to cover conformally the via hole provided with the via-insulating layer, the buffer layer being formed of a material whose shrinkability is superior to the via-insulating layer, forming a through electrode to fill the via hole provided with the buffer layer, and recessing a bottom surface of the substrate to expose the through electrode.
Abstract:
A semiconductor package may include a redistribution substrate, a semiconductor chip mounted on a top surface of the redistribution substrate, and a conductive terminal provided on a bottom surface of the redistribution substrate. The redistribution substrate may include an under-bump pattern including a via portion in contact with the conductive terminal and a wire portion on the via portion and an insulating layer covering top and side surfaces of the under-bump pattern. A central portion of a bottom surface of the via portion may be provided at a level higher than an edge portion of the bottom surface of the via portion.
Abstract:
Semiconductor devices are provided. A semiconductor device includes an insulating layer and a conductive element in the insulating layer. The semiconductor device includes a first barrier pattern in contact with a surface of the conductive element and a surface of the insulating layer. The semiconductor device includes a second barrier pattern on the first barrier pattern. Moreover, the semiconductor device includes a metal pattern on the second barrier pattern. Related semiconductor packages are also provided.