Abstract:
A method and apparatus are provided for generating a unique identifier. One or more tests are performed over one or more data-dependent circuit paths for one or more circuits. The one or more tests are then repeated over the one or more data-dependent circuit paths for the one or more circuits while adjusting an operating frequency and/or operating voltage for each of the one or more circuits. A threshold frequency and/or threshold voltage is ascertained for each of the one or more data-dependent circuit paths. An identifier may then be generated based on a plurality of the threshold frequencies and/or threshold voltages ascertained for the one or more data-dependent circuit paths.
Abstract:
One feature pertains to a method for implementing a physically unclonable function (PUF). The method includes providing an array of magnetoresistive random access memory (MRAM) cells, where the MRAM cells are each configured to represent one of a first logical state and a second logical state. The array of MRAM cells are un-annealed and free from exposure to an external magnetic field oriented in a direction configured to initialize the MRAM cells to a single logical state of the first and second logical states. Consequently, each MRAM cell has a random initial logical state of the first and second logical states. The method further includes sending a challenge to the MRAM cell array that reads logical states of select MRAM cells of the array, and obtaining a response to the challenge from the MRAM cell array that includes the logical states of the selected MRAM cells of the array.
Abstract:
One feature pertains to a method that includes implementing a Physical Unclonable Function (PUF) circuit, and obtaining a first set of output bits from the PUF circuit by operating the PUF circuit at a first supply voltage level and/or first frequency. Then, at least one of the first supply voltage level is changed to a second supply voltage level and/or the first frequency is changed to a second frequency, where the second supply voltage level and the second frequency are different than the first supply voltage level and the first frequency, respectively. A second set of output bits is then obtained by operating the PUF circuit at the second supply voltage level and/or the second frequency, where the second set of output bits is in part different than the first set. Secure data is generated using the first set of output bits and the second sets of output bits.
Abstract:
One feature pertains to a method of implementing a physically unclonable function. The method includes initializing an array of magnetoresistive random-access memory (MRAM) cells to a first logical state, where each of the MRAM cells have a random transition voltage that is greater than a first voltage and less than a second voltage. The transition voltage represents a voltage level that causes the MRAM cells to transition from the first logical state to a second logical state. The method further includes applying a programming signal voltage to each of the MRAM cells of the array to cause at least a portion of the MRAM cells of the array to randomly change state from the first logical state to the second logical state, where the programming signal voltage is greater than the first voltage and less than the second voltage.
Abstract:
An authentication device is provided that authenticates an electronic device based on the responses from distinct types of physically unclonable functions. The authentication device receives a device identifier associated with the electronic device. It then sends one or more challenges to the electronic device. In response, the authentication device receives one or more responses from the electronic device, the one or more responses including characteristic information generated from two or more distinct types of physically unclonable functions in the electronic device.
Abstract:
Disclosed is an apparatus and method to securely activate or revoke a key. For example, the apparatus may comprise: a storage device to store a plurality of pre-stored keys; a communication interface to receive an activate key command and a certificate associated with one of the pre-stored keys; and a processor. The processor may be coupled to the storage device and the communication interface and may be configured to: implement the activate key command to reboot the apparatus with the pre-stored key and the certificate; and determine if the reboot is successful.
Abstract:
A method includes coupling a first magnetic tunnel junction (MTJ) element and a second MTJ element to a comparison circuit. The method also includes comparing, at the comparison circuit, a first resistance of the first MTJ element to a second resistance of the second MTJ element. The method further includes generating a first physical unclonable function (PUF) output bit based on a result of comparing the first resistance to the second resistance.
Abstract:
One feature pertains to a near field communication (NFC) target device comprising a memory circuit adapted to store sensitive data, an NFC interface adapted to transmit and receive information using NFC protocols, and a processing circuit. The processing circuit receives a plurality of provider identification (PID) numbers from a plurality of providers, where each PID number is associated with a different provider. The processing circuit also stores the PID numbers at the memory circuit, and assigns a privilege mask to each PID number received and stored. The NFC target device may also include a physical unclonable function (PUF) circuit. The processing circuit may additionally provide one or more PID numbers as input challenges to the PUF circuit, and receive one or more PUF output responses from the PUF circuit, where the PUF output responses are different from one another and are associated with different providers.
Abstract:
A method includes coupling a first magnetic tunnel junction (MTJ) element and a second MTJ element to a comparison circuit. The method also includes comparing, at the comparison circuit, a first resistance of the first MTJ element to a second resistance of the second MTJ element. The method further includes generating a first physical unclonable function (PUF) output bit based on a result of comparing the first resistance to the second resistance.
Abstract:
One feature pertains to a method of implementing a physically unclonable function. The method includes initializing an array of magnetoresistive random-access memory (MRAM) cells to a first logical state, where each of the MRAM cells have a random transition voltage that is greater than a first voltage and less than a second voltage. The transition voltage represents a voltage level that causes the MRAM cells to transition from the first logical state to a second logical state. The method further includes applying a programming signal voltage to each of the MRAM cells of the array to cause at least a portion of the MRAM cells of the array to randomly change state from the first logical state to the second logical state, where the programming signal voltage is greater than the first voltage and less than the second voltage.