Abstract:
An authentication device is provided that authenticates an electronic device based on the responses from distinct types of physically unclonable functions. The authentication device receives a device identifier associated with the electronic device. It then sends one or more challenges to the electronic device. In response, the authentication device receives one or more responses from the electronic device, the one or more responses including characteristic information generated from two or more distinct types of physically unclonable functions in the electronic device.
Abstract:
One feature pertains to generating a unique identifier for an electronic device by combining static random access memory (SRAM) PUFs and circuit delay based PUFs (e.g., ring oscillator (RO) PUFs, arbiter PUFs, etc.). The circuit delay based PUFs may be used to conceal either a challenge to, and/or response from, the SRAM PUFs, thereby inhibiting an attacker from being able to clone a memory device's response.
Abstract:
An authentication device is provided that authenticates an electronic device based on the responses from distinct types of physically unclonable functions. The authentication device receives a device identifier associated with the electronic device. It then sends one or more challenges to the electronic device. In response, the authentication device receives one or more responses from the electronic device, the one or more responses including characteristic information generated from two or more distinct types of physically unclonable functions in the electronic device.
Abstract:
One feature pertains to generating a unique identifier for an electronic device by combining static random access memory (SRAM) PUFs and circuit delay based PUFs (e.g., ring oscillator (RO) PUFs, arbiter PUFs, etc.). The circuit delay based PUFs may be used to conceal either a challenge to, and/or response from, the SRAM PUFs, thereby inhibiting an attacker from being able to clone a memory device's response.