Abstract:
Electronic devices that include a routing substrate with lower inductance path for a capacitor, and related fabrication methods. In exemplary aspects, to provide lower interconnect inductance for a capacitor coupled to a power distribution network in the routing substrate, an additional metal layer that provides an additional, second power plane is disposed in a dielectric layer between adjacent metal layers in adjacent metallization layers. The additional, second power plane is adjacent to a first power plane disposed in a first metal layer of one of the adjacent metallization layers. The disposing of the additional metal layer in the dielectric layer of the metallization layer reduces the thickness of the dielectric material between the first and second power planes coupled to the capacitor as part of the power distribution network. This reduced dielectric thickness between first and second power planes coupled to the capacitor reduces the interconnect inductance for the capacitor.
Abstract:
A device that includes a board, a package and a patch substrate. The board includes a cavity. The package is coupled to a first side of the board. The package includes a substrate and an integrated device coupled to the substrate. The integrated device is located at least partially in the cavity of the board. The patch substrate is coupled to a second side of the board. The patch substrate is located over the cavity of the board. The patch substrate is configured as an electromagnetic interference (EMI) shield for the package.
Abstract:
A toroid inductor includes a plurality of first turns configured in a first ring shape and a plurality of second turns configured in a second ring shape. The plurality of first turns includes a plurality of first upper interconnects, a plurality of first lower interconnects, and a plurality of first vias coupled to the plurality of first upper interconnects and to the plurality of first lower interconnects. The plurality of second turns is at least partially intertwined with the plurality of first turns. The plurality of second turns includes a plurality of second upper interconnects, a plurality of second lower interconnects, and a plurality of second vias coupled to the plurality of second upper interconnects and to the plurality of second lower interconnects.
Abstract:
An integrated circuit (IC) module that includes an integrated circuit (IC) package, a plurality of first solder interconnects coupled to the IC package, an interposer coupled to the IC package through the plurality of first solder interconnects a plurality of second solder interconnects coupled to the interposer; and a printed circuit board (PCB) coupled to the interposer through the plurality of second solder interconnects. The interposer includes an encapsulation layer, a first passive component at least partially embedded in the encapsulation layer, and a plurality of interconnects coupled to the first passive component. The encapsulation layer includes a mold and/or an epoxy fill. The first passive component is configured to operate as an electronic voltage regulator (EVR) for the IC module. In some implementations, the interposer is a fan out interposer.
Abstract:
Some novel features pertain to an integrated device that includes a first metal layer and a second metal layer. The first metal layer includes a first set of regions. The first set of regions includes a first netlist structure for a power distribution network (PDN) of the integrated device. The second metal layer includes a second set of regions. The second set of regions includes a second netlist structure of the PDN of the integrated device. In some implementations, the second metal layer further includes a third set of regions comprising the first netlist structure for the PDN of the integrated device. In some implementations, the first metal layer includes a third set of regions that includes a third netlist structure for the PDN of the integrated device. The third set of regions is non-overlapping with the first set of regions of the first metal layer.
Abstract:
A device comprising a first package and a second package coupled to the first package through a first plurality of solder interconnects. The first package includes a first substrate comprising at least one first dielectric layer and a first plurality of interconnects, and a first integrated device coupled to the first substrate. The second package includes a second substrate comprising at least one second dielectric layer and a second plurality of interconnects, a second integrated device coupled to a first surface of the second substrate, a third integrated device coupled to the first surface of the second substrate through a second plurality of solder interconnects and a first plurality of channel interconnects coupled to the first surface of the second substrate, wherein the first plurality of channel interconnects is located between solder interconnects from the second plurality of solder interconnects.
Abstract:
A package comprising a substrate, an integrated device, and an interconnect integrated device. The substrate includes a first surface and a second surface. The substrate further includes a plurality of interconnects. The integrated device is coupled to the substrate. The interconnect integrated device is coupled to a surface of the substrate. The integrated device, the interconnect integrated device and the substrate are configured to provide an electrical path for an electrical signal of the integrated device, that travels through at least the substrate, then through the interconnect integrated device and back through the substrate.
Abstract:
A toroid inductor includes a plurality of first turns configured in a first ring shape and a plurality of second turns configured in a second ring shape. The plurality of first turns includes a plurality of first upper interconnects, a plurality of first lower interconnects, and a plurality of first vias coupled to the plurality of first upper interconnects and to the plurality of first lower interconnects. The plurality of second turns is at least partially intertwined with the plurality of first turns. The plurality of second turns includes a plurality of second upper interconnects, a plurality of second lower interconnects, and a plurality of second vias coupled to the plurality of second upper interconnects and to the plurality of second lower interconnects.
Abstract:
A package on package semiconductor structure includes a first package positioned above a first surface of a substrate, a second package positioned above the first package, and a first thermal element positioned between the first package and the second package, wherein the first thermal element is separated from the second package by an air gap and the thermal element provides a heat path for heat generated by the first package.
Abstract:
Some features pertain to an integrated device that includes a first package, a set of interconnects, and a second package. The first package includes a first substrate comprising a first surface and a second surface. The first package includes a redistribution portion comprising a redistribution layer. The first package includes a first die coupled to the first surface of the first substrate. The set of interconnects is coupled to the redistribution portion of the first package. The second package is coupled to the first package through the set of interconnects. The second package includes a second substrate comprising a first surface and a second surface; and a second die coupled to the first surface of the second substrate, where the second die is electrically coupled to the first die through the second substrate of the second package, the set of interconnects, and the redistribution portion of the first package.