Abstract:
Techniques for monitoring and controlling bias current of amplifiers are described. In an exemplary design, an apparatus may include an amplifier and a bias circuit. The amplifier may include at least one transistor coupled to an inductor. The bias circuit may generate at least one bias voltage for the at least one transistor in the amplifier to obtain a target bias current for the amplifier. The bias circuit may generate the at least one bias voltage based on a voltage across the inductor in the amplifier, or a current through a current mirror formed with one of the at least one transistor in the amplifier, or a gate-to-source voltage of one of the at least one transistor in the amplifier, or a voltage in a replica circuit replicating the amplifier, or a current applied to the amplifier with a switched mode power supply disabled.
Abstract:
A radio frequency package on package (PoP) circuit is described. The radio frequency package on package (PoP) circuit includes a first radio frequency package. The first radio frequency package includes radio frequency components. The radio frequency package on package (PoP) circuit also includes a second radio frequency package. The second radio frequency package includes radio frequency components. The first radio frequency package and the second radio frequency package are in a vertical configuration. The radio frequency components on the first radio frequency package are designed to reduce the effects of ground inductance.
Abstract:
Certain aspects of the present disclosure provide a semiconductor device. One example semiconductor device generally includes a semiconductor region, an insulative layer, a first terminal, and a first non-insulative region coupled to the first terminal, the insulative layer being disposed between the first non-insulative region and the semiconductor region. In certain aspects, the insulative layer is disposed adjacent to a first side of the semiconductor region. In certain aspects, the semiconductor device also includes a second terminal, and a first silicide layer coupled to the second terminal and disposed adjacent to a second side of the semiconductor region, the first side and the second side being opposite sides of the semiconductor region.
Abstract:
In one embodiment, the present disclosure includes a circuit comprising a first power amplifier stage having an input to receive an input signal, an output coupled to an output node, the first power amplifier stage receiving a time-varying power supply voltage. The circuit further includes a second power amplifier stage configured in parallel with the first power amplifier stage having an input to receive the input signal, an output coupled to the output node, the second power amplifier stage receiving the time-varying power supply voltage. A first gain of the first power amplifier stage decreases when the power supply voltage is in a first low voltage range, and a second gain of the second power amplifier stage compensates for the decreasing gain of the first power amplifier stage in the first low voltage range.
Abstract:
Some novel features pertain to a first example provides a semiconductor device that includes a printed circuit board (PCB), asset of solder balls and a die. The PCB includes a first metal layer. The set of solder balls is coupled to the PCB. The die is coupled to the PCB through the set of solder balls. The die includes a second metal layer and a third metal layer. The first metal layer of the PCB, the set of solder balls, the second and third metal layers of the die are configured to operate as an inductor in the semiconductor device. In some implementations, the die further includes a passivation layer. The passivation layer is positioned between the second metal layer and the third metal layer. In some implementations, the second metal layer is positioned between the passivation layer and the set of solder balls.
Abstract:
Techniques for monitoring and controlling bias current of amplifiers are described. In an exemplary design, an apparatus may include an amplifier and a bias circuit. The amplifier may include at least one transistor coupled to an inductor. The bias circuit may generate at least one bias voltage for the at least one transistor in the amplifier to obtain a target bias current for the amplifier. The bias circuit may generate the at least one bias voltage based on a voltage across the inductor in the amplifier, or a current through a current mirror formed with one of the at least one transistor in the amplifier, or a gate-to-source voltage of one of the at least one transistor in the amplifier, or a voltage in a replica circuit replicating the amplifier, or a current applied to the amplifier with a switched mode power supply disabled.
Abstract:
An exemplary embodiment disclosed comprises a mixer having a plurality of input leads; a first degenerative impedance element coupled to a first input lead of the mixer; a second degenerative impedance element coupled to a second input lead of the mixer; and a local oscillator (LO) system comprising a plurality of duty cycle modes to generate a LO signal for the mixer, the local oscillator system operates in a first duty cycle based on a first gain state of the mixer, and in a second duty cycle based on a second gain state of the mixer.
Abstract:
Techniques to implement a filter for a selected signal path by reusing a circuit component in an unselected signal path are disclosed. In an exemplary design, an apparatus includes first, second, and third circuits. The first circuit passes a first radio frequency (RF) signal to an antenna when a first signal path is selected. The second circuit passes a second RF signal to the antenna when a second signal path is selected. The third circuit is selectively coupled to the first circuit, e.g., via a switch. The first and third circuits form a filter for the second RF signal (e.g., to attenuate a harmonic of the second RF signal) when the second signal path is selected and the first signal path is unselected. The first circuit may include a series inductor, and the third circuit may include a shunt capacitor.
Abstract:
Certain aspects of the present disclosure provide a semiconductor device. One example semiconductor device generally includes a first semiconductor region; a first non-insulative region disposed adjacent to a first lateral side of the first semiconductor region; a second non-insulative region disposed adjacent to a second lateral side of the first semiconductor region, the second lateral side being opposite to the first lateral side; a second semiconductor region disposed adjacent to a third lateral side of the first semiconductor region, the second semiconductor region and the first semiconductor region having at least one of different doping types or different doping concentrations; an insulative layer adjacent to a top side of the first semiconductor region; and a third non-insulative region, the insulative layer being disposed between the third non-insulative region and the first semiconductor region.
Abstract:
Exemplary embodiments are directed to an amplifier module which may comprise a transmit path including a first amplifier and a second amplifier. The exemplary amplifier module may further include a transformer coupled between the first amplifier and the second amplifier and switchably configured for coupling the first amplifier in series with the second amplifier in a first mode and coupling the first amplifier to bypass the second amplifier in a second mode.