Abstract:
A data reading method for a rewritable non-volatile memory module is provided. The method includes determining a corresponding read voltage based on a critical voltage distribution of memory cells of a word line. The method further includes: if the critical voltage distribution of the memory cells is a right-offset distribution, applying a set of right adjustment read voltage to the word line to read a plurality of bit data as corresponding soft values; and decoding the corresponding soft values to obtain page data stored in the memory cells. Herein, the set of right adjustment read voltage includes a plurality of positive adjustment read voltages and a plurality of negative adjustment read voltages and the number of the positive adjustment read voltages is more than the number of the negative adjustment read voltages. Accordingly, storage states of the memory cells can be identified correctly.
Abstract:
A data writing method for writing data into a memory cell of a rewritable non-volatile memory module, and a memory controller and a memory storage apparatus using the same area provided. The method includes recording a wear degree of the memory cell and adjusting an initial write voltage and a write voltage pulse time corresponding to the memory cell based on the wear degree thereof. The method further includes programming the memory cell by applying the initial write voltage and the write voltage pulse time, thereby writing the data into the memory cell. Accordingly, data can be accurately stored into the rewritable non-volatile memory module by the method.
Abstract:
A storage apparatus is provided. The controller of the storage apparatus includes an error correction module and a data disordering module. The error correction module is configured to perform an error correction procedure for a data packet to be written into a flash memory module of the storage apparatus for generating sequence data codes containing the data packet and corresponding error correcting codes, wherein the data packet includes a data area recording data to be written and a spare area recording data related to the data packet. The data disordering module is configured to convert the sequence data codes into non-sequence data codes, wherein the data of the data area and the spare area and error correcting codes are dispersed in the non-sequence data codes. Accordingly, it is possible to effectively increase the safety of the data packet.
Abstract:
A decoding method, a memory storage device and a rewritable non-volatile memory module are provided. The method includes: reading a plurality of bits from the rewritable non-volatile memory module according to a reading voltage; performing a parity check of a low density parity check (LDPC) algorithm on the bits to obtain syndromes, and each of the bits is corresponding to at least one of the syndromes; determining whether the bits have an error according to the syndromes; if the bits have the error, obtaining a syndrome weight of each of the bits according to the syndromes corresponding to each of the bits; obtaining an initial value of each of the bits according to the syndrome weight of each of the bits; and performing a first iteration decoding of the LDPC algorithm on the bits according to the initial values. Accordingly, the decoding speed is increased.
Abstract:
A data reading method for a rewritable non-volatile memory module is provided. The method includes applying a test voltage to a word line of the rewritable non-volatile memory module to read a plurality of verification bit data. The method also includes calculating a variation of bit data identified as a first status among the verification bit data, obtaining a new read voltage value set based on the variation, and updating a threshold voltage set for the word line with the new read voltage value set. The method further includes using the updated threshold voltage set to read data from a physical page formed by memory cells connected to the word line. Accordingly, storage states of memory cells in the rewritable non-volatile memory module can be identified correctly, thereby preventing data stored in the memory cells from losing.
Abstract:
A decoding method, a memory storage device and a rewritable non-volatile memory module are provided. The method includes: reading a plurality of bits from the rewritable non-volatile memory module according to a reading voltage; performing a parity check of a low density parity check (LDPC) algorithm on the bits to obtain syndromes, and each of the bits is corresponding to at least one of the syndromes; determining whether the bits have an error according to the syndromes; if the bits have the error, obtaining a syndrome weight of each of the bits according to the syndromes corresponding to each of the bits; obtaining an initial value of each of the bits according to the syndrome weight of each of the bits; and performing a first iteration decoding of the LDPC algorithm on the bits according to the initial values. Accordingly, the decoding speed is increased.
Abstract:
A read voltage setting method for a rewritable non-volatile memory module is provided. The method includes: reading test data stored in memory cells of a word line to obtain a corresponding critical voltage distribution and identifying a default read voltage corresponding to the word line based on the corresponding critical voltage distribution; applying a plurality of test read voltages obtained according to the default read voltage to the word line to read a plurality of test page data; and determining an optimized read voltage corresponding to the word line according to the minimum error bit number among a plurality of error bit numbers of the test page data. The method further includes calculating a difference value between the default read voltage and the optimized read voltage as a read voltage adjustment value corresponding to the word line and recording the read voltage adjustment value in a retry table.
Abstract:
A NAND flash memory unit, an operating method and a reading method are provided. The NAND flash memory unit includes a plurality of gate layers, a tunnel layer, a charge trapping layer, a conductor layer and a second dielectric layer. A first dielectric layer is included between two adjacent gate layers among the gate layers. The tunnel layer, the charge trapping layer, the conductor layer, and the second dielectric layer penetrate the gate layers. The charge trapping layer is disposed between the tunnel layer and the gate layers, and the second dielectric layer is disposed between the conductor layer and the tunnel layer. Therefore, an erasing speed may be increased; the charge trapping layer may be repaired; the controllability of the gate layers may be increased.
Abstract:
A NAND flash memory unit, an operating method and a reading method are provided. The NAND flash memory unit includes a plurality of gate layers, a tunnel layer, a charge trapping layer, a conductor layer and a second dielectric layer. A first dielectric layer is included between two adjacent gate layers among the gate layers. The tunnel layer, the charge trapping layer, the conductor layer, and the second dielectric layer penetrate the gate layers. The charge trapping layer is disposed between the tunnel layer and the gate layers, and the second dielectric layer is disposed between the conductor layer and the tunnel layer. Therefore, an erasing speed may be increased; the charge trapping layer may be repaired; the controllability of the gate layers may be increased.
Abstract:
A NAND flash memory unit, an operating method and a reading method are provided. The NAND flash memory unit includes a plurality of gate layers, a tunnel layer, a charge trapping layer, a conductor layer and a second dielectric layer. A first dielectric layer is included between two adjacent gate layers among the gate layers. The tunnel layer, the charge trapping layer, the conductor layer, and the second dielectric layer penetrate the gate layers. The charge trapping layer is disposed between the tunnel layer and the gate layers, and the second dielectric layer is disposed between the conductor layer and the tunnel layer. Therefore, an erasing speed may be increased; the charge trapping layer may be repaired; the controllability of the gate layers may be increased.