Abstract:
An inspection system is provided that can include a reflectometer having a light source for projecting light, and a light splitter for receiving the light projected by the light source, transforming at least one aspect of the light, and projecting the light once transformed. The reflectometer further has an off-axis unobscured objective lens through which the light transformed by the light splitter passes to contact a fabricated component, and has a detector for detecting a result of the transformed light contacting the fabricated component. The inspection system can additionally, or alternatively, include an ellipsometer having a light source similar to the reflectometer, and further a polarizing element to polarize the light of the light splitter. The polarized light passes through an off-axis unobscured objective lens to contact a fabricated component, and a detector detects a result of the polarized light contacting the fabricated component.
Abstract:
An apparatus includes (i) a bright light source for providing an illumination beam at multiple wavelengths selectable with a range from a deep ultraviolet wavelength to an infrared wavelength, (ii) illumination optics for directing the illumination beam towards a sample at selectable sets of angles of incidence (AOI's) or azimuth angles (AZ's) and polarization states to provide spectroscopic ellipsometry, wherein the illumination optics include an apodizer for controlling a spot size of the illumination beam on the sample at each of the selectable AOI/AZ sets, (iii) collection optics for directing an output beam from the sample in response to the illumination beam at each of the selectable AOI/AZ sets and polarization states towards a detector that generates an output signal or image based on the output beam, and (v) a controller for characterizing a feature of the sample based on the output signal or image.
Abstract:
Various metrology systems and methods for high aspect ratio and large lateral dimension structures are provided. One method includes directing light to one or more structures formed on a wafer. The light includes ultraviolet light, visible light, and infrared light. The one or more structures include at least one high aspect ratio structure or at least one large lateral dimension structure. The method also includes generating output responsive to light from the one or more structures due to the light directed to the one or more structures. In addition, the method includes determining one or more characteristics of the one or more structures using the output.
Abstract:
An apparatus to calibrate a polarizer in a polarized optical system at any angle of incidence. The apparatus decouples the polarization effect of the system from the polarization effect of the sample. The apparatus includes a substrate with a polarizer disposed on the surface. An indicator on the substrate indicates the polarization orientation of the polarizer, which is in a predetermined orientation with respect to the substrate.
Abstract:
An apparatus to calibrate a polarizer in a polarized optical system at any angle of incidence. The apparatus decouples the polarization effect of the system from the polarization effect of the sample. The apparatus includes a substrate with a polarizer disposed on the surface. An indicator on the substrate indicates the polarization orientation of the polarizer, which is in a predetermined orientation with respect to the substrate.
Abstract:
The present invention may include an illumination source, a detector, a selectably adjustable optical system including a dynamically adjustable illumination pupil of the illumination arm, a dynamically adjustable collection pupil of the collection arm, a dynamically adjustable illumination field stop of the illumination arm, a dynamically adjustable collection field stop of the collection arm, a sensor configured to measure one or more optical characteristics of one or more components of the optical system, and a control system configured to selectably dynamically adjust at least one of the illumination pupil, the collection pupil, the illumination field stop, the collection field stop, and a spectral radiance of the illumination source.
Abstract:
Apparatus and methods for performing optically based film thickness measurements of highly absorbing films (e.g., high-K dielectric films) with improved measurement sensitivity are described herein. A highly absorbing film layer is fabricated on top of a highly reflective film stack. The highly reflective film stack includes one or more nominally identical sets of multiple layers of different, optically contrasting materials. The highly reflective film stack gives rise to optical resonance in particular wavelength ranges. The high reflectance at the interface of the highly absorbing film layer and the highly reflective film stack increases measured light intensity and measurement sensitivity. The thickness and optical dispersion of the different material layers of the highly reflective film stack are selected to induce optical resonance in a desired wavelength range. The desired wavelength range is selected to minimize absorption by the highly absorbing film under measurement.
Abstract:
Methods and systems for performing spectroscopic reflectometry measurements of semiconductor structures at infrared wavelengths are presented herein. In some embodiments measurement wavelengths spanning a range from 750 nanometers to 2,600 nanometers, or greater, are employed. In one aspect, reflectometry measurements are performed at oblique angles to reduce the influence of backside reflections on measurement results. In another aspect, a broad range of infrared wavelengths are detected by a detector that includes multiple photosensitive areas having different sensitivity characteristics. Collected light is linearly dispersed across the surface of the detector according to wavelength. Each different photosensitive area is arranged on the detector to sense a different range of incident wavelengths. In this manner, a broad range of wavelengths are detected with high signal to noise ratio by a single detector.
Abstract:
Methods and systems for evaluating the performance of multiple patterning processes are presented. Patterned structures are measured and one or more parameter values characterizing geometric errors induced by the multiple patterning process are determined. In some examples, a single patterned target and a multiple patterned target are measured, the collected data fit to a combined measurement model, and the value of a structural parameter indicative of a geometric error induced by the multiple patterning process is determined based on the fit. In some other examples, light having a diffraction order different from zero is collected and analyzed to determine the value of a structural parameter that is indicative of a geometric error induced by a multiple patterning process. In some embodiments, a single diffraction order different from zero is collected. In some examples, a metrology target is designed to enhance light diffracted at an order different from zero.
Abstract:
Methods and systems for matching measurement spectra across one or more optical metrology systems are presented. The values of one or more system parameters used to determine the spectral response of a specimen to a measurement performed by a target metrology system are optimized. The system parameter values are optimized such that differences between measurement spectra generated by a reference system and the target system are minimized for measurements of the same metrology targets. Methods and systems for matching spectral errors across one or more optical metrology systems are also presented. A trusted metrology system measures the value of at least one specimen parameter to minimize model errors introduced by differing measurement conditions present at the time of measurement by the reference and target metrology systems. Methods and systems for parameter optimization based on low-order response surfaces are presented to reduce the compute time required to refine system calibration parameters.