Abstract:
An inspection system is provided that can include a reflectometer having a light source for projecting light, and a light splitter for receiving the light projected by the light source, transforming at least one aspect of the light, and projecting the light once transformed. The reflectometer further has an off-axis unobscured objective lens through which the light transformed by the light splitter passes to contact a fabricated component, and has a detector for detecting a result of the transformed light contacting the fabricated component. The inspection system can additionally, or alternatively, include an ellipsometer having a light source similar to the reflectometer, and further a polarizing element to polarize the light of the light splitter. The polarized light passes through an off-axis unobscured objective lens to contact a fabricated component, and a detector detects a result of the polarized light contacting the fabricated component.
Abstract:
Methods and systems for measuring a specimen while actively stabilizing an optical measurement beam subject to changes in polarization by a rotating polarizer element are described herein. Movement of a focused measurement beam spot induced by a rotating polarizer element is compensated by actively controlling the position of an optical element in the beam path based on measurements of the focused measurement beam spot. Both feedback and feedforward control schemes may be employed to reduce beam position error. In one aspect, a measurement system includes a rotating optical polarizer, a beam position sensor, and an active beam compensating element in the illumination beam path, the collection beam path, or both. Beam position errors are detected by the beam position sensor, and control commands are communicated to the active beam compensating element to reduce the measured beam position errors.
Abstract:
A lens system includes a curved primary mirror and an aspheric secondary mirror. The aspheric secondary mirror has a diameter smaller than that of the primary mirror and shares an optical axis with the primary mirror. The aspheric secondary mirror and the primary mirror are rotationally symmetric with respect to the optical axis. A support member, which may be transparent over an operating wavelength of the lens system, is disposed on the aspheric secondary mirror.
Abstract:
Methods and systems for performing semiconductor measurements based on hyperspectral imaging are presented herein. A hyperspectral imaging system images a wafer over a large field of view with high pixel density over a broad range of wavelengths. Image signals collected from a measurement area are detected at a number of pixels. The detected image signals from each pixel are spectrally analyzed separately. In some embodiments, the illumination and collection optics of a hyperspectral imaging system include fiber optical elements to direct illumination light from the illumination source to the measurement area on the surface of the specimen under measurement and fiber optical elements to image the measurement area. In another aspect, a fiber optics collector includes an image pixel mapper that couples a two dimensional array of collection fiber optical elements into a one dimensional array of pixels at the spectrometer and the hyperspectral detector.
Abstract:
A lens system includes a curved primary mirror and an aspheric secondary mirror. The aspheric secondary mirror has a diameter smaller than that of the primary mirror and shares an optical axis with the primary mirror. The aspheric secondary mirror and the primary mirror are rotationally symmetric with respect to the optical axis. A support member, which may be transparent over an operating wavelength of the lens system, is disposed on the aspheric secondary mirror.
Abstract:
Methods and systems for performing semiconductor measurements based on hyperspectral imaging are presented herein. A hyperspectral imaging system images a wafer over a large field of view with high pixel density over a broad range of wavelengths. Image signals collected from a measurement area are detected at a number of pixels. The detected image signals from each pixel are spectrally analyzed separately. In some embodiments, the illumination and collection optics of a hyperspectral imaging system include fiber optical elements to direct illumination light from the illumination source to the measurement area on the surface of the specimen under measurement and fiber optical elements to image the measurement area. In another aspect, a fiber optics collector includes an image pixel mapper that couples a two dimensional array of collection fiber optical elements into a one dimensional array of pixels at the spectrometer and the hyperspectral detector.
Abstract:
In some embodiments, a collection system of a semiconductor metrology tool includes a chuck to support a target from which an optical beam is reflected and an aperture mask to provide an adjustable aperture for the reflected optical beam. The aperture mask includes a plurality of opaque plates with adjustable positions. The collection system also includes a spectrometer to receive the reflected optical beam. The aperture mask is situated between the chuck and the spectrometer along the optical axis.
Abstract:
Methods and systems for measuring a specimen while actively stabilizing an optical measurement beam subject to changes in polarization by a rotating polarizer element are described herein. Movement of a focused measurement beam spot induced by a rotating polarizer element is compensated by actively controlling the position of an optical element in the beam path based on measurements of the focused measurement beam spot. Both feedback and feedforward control schemes may be employed to reduce beam position error. In one aspect, a measurement system includes a rotating optical polarizer, a beam position sensor, and an active beam compensating element in the illumination beam path, the collection beam path, or both. Beam position errors are detected by the beam position sensor, and control commands are communicated to the active beam compensating element to reduce the measured beam position errors.
Abstract:
In some embodiments, a collection system of a semiconductor metrology tool includes a chuck to support a target from which an optical beam is reflected and an aperture mask to provide an adjustable aperture for the reflected optical beam. The aperture mask includes a plurality of opaque plates with adjustable positions. The collection system also includes a spectrometer to receive the reflected optical beam. The aperture mask is situated between the chuck and the spectrometer along the optical axis.