Abstract:
In some embodiments, a collection system of a semiconductor metrology tool includes a chuck to support a target from which an optical beam is reflected and an aperture mask to provide an adjustable aperture for the reflected optical beam. The aperture mask includes a plurality of opaque plates with adjustable positions. The collection system also includes a spectrometer to receive the reflected optical beam. The aperture mask is situated between the chuck and the spectrometer along the optical axis.
Abstract:
Methods and systems for measuring a specimen while actively stabilizing an optical measurement beam subject to changes in polarization by a rotating polarizer element are described herein. Movement of a focused measurement beam spot induced by a rotating polarizer element is compensated by actively controlling the position of an optical element in the beam path based on measurements of the focused measurement beam spot. Both feedback and feedforward control schemes may be employed to reduce beam position error. In one aspect, a measurement system includes a rotating optical polarizer, a beam position sensor, and an active beam compensating element in the illumination beam path, the collection beam path, or both. Beam position errors are detected by the beam position sensor, and control commands are communicated to the active beam compensating element to reduce the measured beam position errors.
Abstract:
In some embodiments, a collection system of a semiconductor metrology tool includes a chuck to support a target from which an optical beam is reflected and an aperture mask to provide an adjustable aperture for the reflected optical beam. The aperture mask includes a plurality of opaque plates with adjustable positions. The collection system also includes a spectrometer to receive the reflected optical beam. The aperture mask is situated between the chuck and the spectrometer along the optical axis.
Abstract:
A method and system to measure misalignment error between two overlying or interlaced periodic structures are proposed. The overlying or interlaced periodic structures are illuminated by incident radiation, and the diffracted radiation of the incident radiation by the overlying or interlaced periodic structures are detected to provide an output signal. The misalignment between the overlying or interlaced periodic structures may then be determined from the output signal.
Abstract:
Methods and systems for controlling illumination beam spot size for Transmission, Small-Angle X-ray Scatterometry (T-SAXS) measurements of different sized metrology targets are described herein. An X-ray illumination optics subsystem includes one or more focusing optical elements with object and image planes at fixed locations and one or more illumination apertures or slits that independently control magnification and beam divergence. In a further aspect, the illumination source size and shape is controlled, along with magnification and beam divergence. In this manner, beam divergence and illumination spot size on a specimen are independently controlled, while maintaining constant illumination flux.
Abstract:
Methods and systems for performing co-located measurements of semiconductor structures with two or more measurement subsystems are presented herein. To achieve a sufficiently small measurement box size, the metrology system monitors and corrects the alignment of the measurement spot of each metrology subsystem with a metrology target to achieve maximum co-location of the measurement spots of each metrology subsystem with the metrology target. In another aspect, measurements are performed simultaneously by two or more metrology subsystems at high throughput at the same wafer location. Furthermore, the metrology system effectively decouples simultaneously acquired measurement signals associated with each measurement subsystem. This maximizes signal information associated with simultaneous measurements of the same metrology by two or more metrology subsystems.
Abstract:
Methods and systems for measuring a specimen while actively stabilizing an optical measurement beam subject to changes in polarization by a rotating polarizer element are described herein. Movement of a focused measurement beam spot induced by a rotating polarizer element is compensated by actively controlling the position of an optical element in the beam path based on measurements of the focused measurement beam spot. Both feedback and feedforward control schemes may be employed to reduce beam position error. In one aspect, a measurement system includes a rotating optical polarizer, a beam position sensor, and an active beam compensating element in the illumination beam path, the collection beam path, or both. Beam position errors are detected by the beam position sensor, and control commands are communicated to the active beam compensating element to reduce the measured beam position errors.
Abstract:
A method and system to measure misalignment error between two overlying or interlaced periodic structures are proposed. The overlying or interlaced periodic structures are illuminated by incident radiation, and the diffracted radiation of the incident radiation by the overlying or interlaced periodic structures are detected to provide an output signal. The misalignment between the overlying or interlaced periodic structures may then be determined from the output signal.
Abstract:
Methods and systems for controlling illumination beam spot size for Transmission, Small-Angle X-ray Scatterometry (T-SAXS) measurements of different sized metrology targets are described herein. An X-ray illumination optics subsystem includes one or more focusing optical elements with object and image planes at fixed locations and one or more illumination apertures or slits that independently control magnification and beam divergence. In a further aspect, the illumination source size and shape is controlled, along with magnification and beam divergence. In this manner, beam divergence and illumination spot size on a specimen are independently controlled, while maintaining constant illumination flux.
Abstract:
A method and system to measure misalignment error between two overlying or interlaced periodic structures are proposed. The overlying or interlaced periodic structures are illuminated by incident radiation, and the diffracted radiation of the incident radiation by the overlying or interlaced periodic structures are detected to provide an output signal. The misalignment between the overlying or interlaced periodic structures may then be determined from the output signal.