Abstract:
Methods and systems for solving measurement models of complex device structures with reduced computational effort are presented. In some embodiments, a measurement signal transformation model is employed to compute transformed measurement signals from coarse measurement signals. The transformed measurement signals more closely approximate a set of measured signals than the coarse measurement signals. However, the coarse set of measured signals are computed with less computational effort than would be required to directly compute measurement signals that closely approximate the set of measured signals. In other embodiments, a measurement signal transformation model is employed to compute transformed measurement signals from actual measured signals. The transformed measurement signals more closely approximate the coarse measurement signals than the actual measured signals. Transformed measurement signals are subsequently used for regression, library generation, or other analyses typically employed as part of an effort to characterize structural, material, and process parameters in semiconductor manufacturing.
Abstract:
Methods and systems for calibrating system parameter values of a target inspection system are presented. Spectral Error Based Calibration (SEBC) increases consistency among inspection systems by minimizing differences in the spectral error among different inspection systems for a given specimen or set of specimens. The system parameter values are determined such that differences between a spectral error associated with a measurement of a specimen by the target inspection system and a spectral error associated with a measurement of the same specimen by a reference inspection system are minimized. In some examples, system parameter values are calibrated without modifying specimen parameters. Small inaccuracies in specimen parameter values have little effect on the calibration because the target system and the reference system both measure the same specimen or set of specimens. By performing SEBC over a set of specimens, the resulting calibration is robust to a wide range of specimens under test.
Abstract:
A metrology performance analysis system includes a metrology tool including one or more detectors and a controller communicatively coupled to the one or more detectors. The controller is configured to receive one or more metrology data sets associated with a metrology target from the metrology tool in which the one or more metrology data sets include one or more measured metrology metrics and the one or more measured metrology metrics indicate deviations from nominal values. The controller is further configured to determine relationships between the deviations from the nominal values and one or more selected semiconductor process variations, and determine one or more root causes of the deviations from the nominal values based on the relationships between values of the one or more metrology metrics and the one or more selected semiconductor process variations.
Abstract:
Methods and systems for determining a meta-model to correct model based measurements are presented. Such systems are employed to measure structural and material characteristics (e.g., material composition, dimensional characteristics of structures and films, etc.) associated with different semiconductor fabrication processes. In one aspect, model-based measurement parameter values are corrected based on a meta-model that maps specimen parameter values determined based on the measurement model to reference parameter values determined based on a more accurate reference measurement. In another aspect, parameters of a meta-model are determined such that errors between reference parameter values and specimen parameter values determined based on the measurement model are minimized. In some embodiments, the accuracy of a corrected parameter value is an order of magnitude greater than the uncorrected parameter value.
Abstract:
The disclosure is directed to improving optical metrology for a sample with complex structural attributes utilizing custom designed secondary targets. At least one parameter of a secondary target may be controlled to improve sensitivity for a selected parameter of a primary target and/or to reduce correlation of the selected parameter with other parameters of the primary target. Parameters for the primary and secondary target may be collected. The parameters may be incorporated into a scatterometry model. Simulations utilizing the scatterometry model may be conducted to determine a level of sensitivity or a level of correlation for the selected parameter of the primary target. The controlled parameter of the secondary target may be modified until a selected level of sensitivity or a selected level of correlation is achieved.
Abstract:
Methods and systems for matching measurement spectra across one or more optical metrology systems are presented. The values of one or more system parameters used to determine the spectral response of a specimen to a measurement performed by a target metrology system are optimized. The system parameter values are optimized such that differences between measurement spectra generated by a reference system and the target system are minimized for measurements of the same metrology targets. Methods and systems for matching spectral errors across one or more optical metrology systems are also presented. A trusted metrology system measures the value of at least one specimen parameter to minimize model errors introduced by differing measurement conditions present at the time of measurement by the reference and target metrology systems. Methods and systems for parameter optimization based on low-order response surfaces are presented to reduce the compute time required to refine system calibration parameters.
Abstract:
A library expansion system, method, and computer program product for metrology are provided. In use, processing within a first multi-dimensional library is performed by a metrology system. During the processing within the first multi-dimensional library, a second multi-dimensional library is identified. The processing is then transitioned to the second multi-dimensional library. Further, processing within the second multi-dimensional library is performed by the metrology system.
Abstract:
A system, method, and computer program product are provided for automatically determining a parameter causing an abnormal semiconductor metrology measurement. In use, an abnormal semiconductor metrology measurement measured from a fabricated semiconductor component is received. At least one parameter of the fabricated semiconductor component causing the abnormal semiconductor metrology measurement is then automatically determined by one or more hardware processors. In particular, the one or more hardware processors determine a subset of parameters of the fabricated semiconductor component as potential sources of the abnormal semiconductor metrology measurement, rank the parameters in the determined subset of parameters, select an Nth number of the parameters in the determined subset of parameters in accordance with the ranking, and then analyze each of the selected parameters to identify one or more of the selected parameters as the at least one parameter of the fabricated semiconductor component causing the abnormal semiconductor metrology measurement.
Abstract:
Methods and systems of process control and yield management for semiconductor device manufacturing based on predictions of final device performance are presented herein. Estimated device performance metric values are calculated based on one or more device performance models that link parameter values capable of measurement during process to final device performance metrics. In some examples, an estimated value of a device performance metric is based on at least one structural characteristic and at least one band structure characteristic of an unfinished, multi-layer wafer. In some examples, a prediction of whether a device under process will fail a final device performance test is based on the difference between an estimated value of a final device performance metric and a specified value. In some examples, an adjustment in one or more subsequent process steps is determined based at least in part on the difference.
Abstract:
A library expansion system, method, and computer program product for metrology are provided. In use, processing within a first multi-dimensional library is performed by a metrology system. During the processing within the first multi-dimensional library, a second multi-dimensional library is identified. The processing is then transitioned to the second multi-dimensional library. Further, processing within the second multi-dimensional library is performed by the metrology system.