Abstract:
A metrology system is disclosed. In one embodiment, the metrology system includes a controller communicatively coupled to a reference metrology tool and an optical metrology tool, the controller including one or more processors configured to: generate a geometric model for determining a profile of a test HAR structure from metrology data from a reference metrology tool; generate a material model for determining one or more material parameters of a test HAR structure from metrology data from the optical metrology tool; form a composite model from the geometric model and the material model; measure at least one additional test HAR structure with the optical metrology tool; and determine a profile of the at least one additional test HAR structure based on the composite model and metrology data from the optical metrology tool associated with the at least one HAR test structure.
Abstract:
Various metrology systems and methods for high aspect ratio and large lateral dimension structures are provided. One method includes directing light to one or more structures formed on a wafer. The light includes ultraviolet light, visible light, and infrared light. The one or more structures include at least one high aspect ratio structure or at least one large lateral dimension structure. The method also includes generating output responsive to light from the one or more structures due to the light directed to the one or more structures. In addition, the method includes determining one or more characteristics of the one or more structures using the output.
Abstract:
A metrology system is disclosed. In one embodiment, the metrology system includes a controller communicatively coupled to a reference metrology tool and an optical metrology tool, the controller including one or more processors configured to: generate a geometric model for determining a profile of a test HAR structure from metrology data from a reference metrology tool; generate a material model for determining one or more material parameters of a test HAR structure from metrology data from the optical metrology tool; form a composite model from the geometric model and the material model; measure at least one additional test HAR structure with the optical metrology tool; and determine a profile of the at least one additional test HAR structure based on the composite model and metrology data from the optical metrology tool associated with the at least one HAR test structure.