Abstract:
There is provided a charged particle gun capable of increasing the number of charged particles contained in each pulse. The charged particle gun operates to emit a charged particle beam and includes: an emitter, an extraction electrode for extracting the charged particle beam from the emitter, a capacitor having one end connected to the extraction electrode, an offset power supply for supplying a first voltage to the one end of the capacitor via a resistor, a pulsed power supply providing an output of a second voltage, and a switch circuit that switches between whether the second voltage or a reference potential is supplied to the other end of the capacitor, based on a reference pulsed signal.
Abstract:
An electron microscope includes an irradiation optical system that focuses electron beams and scans a specimen with the focused electron beams; a deflector that deflects the electron beams transmitted through the specimen; a detector that detects the electron beams transmitted through the specimen; and a control unit that controls the irradiation optical system and the deflector The control unit causes the irradiation optical system to scan the specimen with the electron beams so that the electron beams have a plurality of irradiation positions on the specimen. The control unit causes the deflector to repeatedly deflect the electron beams transmitted through each of the irradiation positions, so that a plurality of electron beams which have the same irradiation position and different incident angle ranges with respect to the specimen are caused to sequentially enter the detector.
Abstract:
An electron microscope is provided which can measure, with high sensitivity and high positional resolution, an amount of deflection of an electron beam occurring when it is transmitted through a sample. The electron microscope (100) is adapted to measure the amount of deflection of the electron beam (EB) when it is transmitted through the sample (S), and has an electron beam source (10) producing the electron beam (EB), an illumination lens system for focusing the electron beam (EB) onto the sample (S), an aperture (30) having an electron beam blocking portion (32) for providing a shield between a central portion (EB1) and an outer peripheral portion (EB2) of the cross section of the beam (EB) impinging on the sample (S), and a segmented detector (20) having a detection surface (22) for detecting the electron beam (EB) transmitted through the sample (S). The detection surface (22) is divided into a plurality of detector segments (D1-D4).
Abstract:
The chromatic aberration corrector (100) has a first multipole element (110) for producing a first electromagnetic field and a second multipole element (120) for producing a second electromagnetic field. The first multipole element (110) first, second, and third portions (110a, 110b, 110c) arranged along an optical axis (OA) having a thickness and producing a quadrupole field in which an electric quadrupole field and a magnetic quadrupole field are superimposed. In the first and third portions (110a, 110c), the electric quadrupole field is set stronger than the magnetic quadrupole field. In the second portion (110b), the magnetic quadrupole field is set stronger than the electric quadrupole field. The second portion (110b) produces a two-fold astigmatism component that is opposite in sign to two-fold astigmatism components produced by the first portion (110a) and third portion (110c).
Abstract:
An aberration correcting device includes a first multipole which generates a hexapole field; a second multipole which generates a hexapole field with a polarity opposite to a polarity of the hexapole filed generated by the first multipole; a third multipole which is disposed between the first multipole and the second multipole and generates an octupole field; a first transfer lens system disposed between the first multipole and the third multipole; and a second transfer lens system disposed between the third multipole and the second multipole. The first transfer lens system includes a plurality of fourth multipoles which generate a field in which an electromagnetic-field superposed quadrupole field and an octupole field are superposed; and the second transfer lens system includes a plurality of fifth multipoles which generate a field in which an electromagnetic-field superposed quadrupole field and an octupole field are superposed.
Abstract:
A distortion measurement method for an electron microscope image includes: loading a distortion measurement specimen having structures arranged in a lattice to a specimen plane of an electron microscope or a plane conjugate to the specimen plane in order to obtain an electron microscope image of the distortion measurement specimen; and measuring a distortion from the obtained electron microscope image of the distortion measurement specimen.
Abstract:
A spherical aberration corrector is offered which permits a correction of deviation of the circularity of at least one of an image and a diffraction pattern and a correction of on-axis aberrations to be carried out independently. The spherical aberration corrector (100) is for use with a charged particle beam instrument (1) for obtaining the image and the diffraction pattern and has a hexapole field generating portion (110) for producing plural stages of hexapole fields, an octopole field superimposing portion (120) for superimposing an octopole on at least one of the plural stages of hexapole fields to correct deviation of the circularity of at least one of the image and diffraction pattern, and a deflection portion (130) for deflecting a charged particle beam.
Abstract:
A method for axial alignment of a charged particle beam relative to at least three stages of multipole elements and a charged particle beam system capable of making the axial alignment. Some parts of the orbit of the beam or the distributions of three astigmatic fields, or both, are simultaneously translated in a direction perpendicular to the optical axis such that astigmatisms of the same order and same type due to axial deviations between successive ones of the astigmatic fields cancel.
Abstract:
A method for axial alignment of a charged particle beam relative to at least three stages of multipole elements and a charged particle beam system capable of making the axial alignment. Some parts of the orbit of the beam or the distributions of three astigmatic fields, or both, are simultaneously translated in a direction perpendicular to the optical axis such that astigmatisms of the same order and same type due to axial deviations between successive ones of the astigmatic fields cancel.