摘要:
Various methods and structures for fabricating a plurality of vertical fin FETs on the same semiconductor substrate in which a first gate length of a first gate in a first vertical fin FET is less than a second gate length of a second gate in a second vertical fin FET. A difference in gate lengths between different vertical fin FETs can be precisely fabricated by using atomic layer silicon germanium epitaxy. Gate length offset is formed at a bottom source/drain junction region of each vertical fin FET transistor, which allows downstream processing for all vertical fin FET transistors to be the same.
摘要:
Low temperature epitaxial silicon deposition for forming the top source or drain regions of VTFET structures. The methods generally include epitaxially growing a silicon layer with a dopant at a temperature less 500° C. on a first surface and an additional surface to form a single crystalline silicon on the first surface and a polysilicon or amorphous silicon on the additional surface. The epitaxially grown silicon layer is then exposed to an etchant include HCl and germane at a temperature less than 500° C. for a period of time effective to selectively remove the polysilicon/amorphous silicon on the additional surface and form a germanium diffused region on and in an outer surface of the single crystalline silicon formed on the first surface.
摘要:
Low temperature epitaxial silicon deposition for forming the top source or drain regions of VTFET structures. The methods generally include epitaxially growing a silicon layer with a dopant at a temperature less 500° C. on a first surface and an additional surface to form a single crystalline silicon on the first surface and a polysilicon or amorphous silicon on the additional surface. The epitaxially grown silicon layer is then exposed to an etchant include HCl and germane at a temperature less than 500° C. for a period of time effective to selectively remove the polysilicon/amorphous silicon on the additional surface and form a germanium diffused region on and in an outer surface of the single crystalline silicon formed on the first surface.
摘要:
Semiconductor devices having non-merged fin extensions and methods for forming the same. Methods for forming semiconductor devices include forming fins on a substrate; forming a dummy gate over the fins, leaving a source and drain region exposed; etching the fins below a surface level of a surrounding insulator layer; and epitaxially growing fin extensions from the etched fins.
摘要:
Improved top source and drain contact designs for VTFET devices are provided. In one aspect, a method of forming a VTFET device includes: depositing a first ILD over a VTFET structure having fins patterned in a substrate, bottom source and drains at a base of the fins, bottom spacers on the bottom source and drains and gates alongside the fins; patterning trenches in the first ILD; forming top spacers lining the trenches; forming top source and drains in the trenches at the tops of the fins; forming sacrificial caps covering the top source and drains; depositing a second ILD onto the first ILD; patterning contact trenches in the second ILD, exposing the sacrificial caps; removing the sacrificial caps through the contact trenches; and forming top source and drain contacts in the contact trenches that wrap around the top source and drains. A VTFET device is also provided.
摘要:
A semiconductor device and a method for fabricating the same. The semiconductor device includes at least a n-type vertical FET and a p-type vertical FET. The n-type vertical FET includes at least a first bottom source/drain layer. The p-type vertical FET includes at least a second bottom source/drain layer. A silicon dioxide layer separates the first bottom source/drain layer and the second bottom source/drain layer. The method includes forming a first bottom source/drain layer in a p-type vertical FET device area. A germanium dioxide layer is formed in contact with the first semiconductor layer a second semiconductor fin formed within a n-type vertical FET device area. A silicon dioxide layer is formed in contact with the first bottom source/drain layer from the germanium dioxide layer. A second bottom source/drain layer is formed in contact with the second semiconductor fin and the silicon dioxide layer.
摘要:
A method of forming a spacer for a vertical transistor is provided. The method includes forming a fin structure on a substrate, depositing a first spacer on exposed surfaces of the substrate to define gaps between the first spacer and the fin structure and depositing a second spacer on the exposed surfaces of the substrate in at least the gaps.
摘要:
Semiconductor devices include multiple fins formed in trenches in an insulator layer. Each of the plurality of fins has a uniform crystal orientation and a fin cap in a source and drain region that extends vertically and laterally beyond the trench. The fin caps of the respective fins are separate from one another. A gate structure is formed over the fins that leaves the source and drain regions exposed. The insulator layer at least partially covers a sidewall of the gate structure.
摘要:
A semiconductor device including a gate structure on a channel region portion of a fin structure, and at least one of an epitaxial source region and an epitaxial drain region on a source region portion and a drain region portion of the fin structure. At least one of the epitaxial source region portion and the epitaxial drain region portion include a first concentration doped portion adjacent to the fin structure, and a second concentration doped portion on the first concentration doped portion. The second concentration portion has a greater dopant concentration than the first concentration doped portion. An extension dopant region extending into the channel portion of the fin structure having an abrupt dopant concentration gradient of n-type or p-type dopants of 7 nm per decade or greater.
摘要:
Methods for forming semiconductor devices having non-merged fin extensions. Methods for forming semiconductor devices include forming trenches in an insulator layer of a substrate. Fins are formed in the trenches and a dummy gate is formed over the fins, leaving a source and drain region exposed. The fins are etched below a surface level of a surrounding insulator layer. Fin extensions are epitaxially grown from the etched fins.