Abstract:
A method for forming CMOS devices includes masking a first portion of a tensile-strained silicon layer of a SOI substrate, doping a second portion of the layer outside the first portion and growing an undoped silicon layer on the doped portion and the first portion. The undoped silicon layer becomes tensile-strained. Strain in the undoped silicon layer over the doped portion is relaxed by converting the doped portion to a porous silicon to form a relaxed silicon layer. The porous silicon is converted to an oxide. A SiGe layer is grown and oxidized to convert the relaxed silicon layer to a compressed SiGe layer. Fins are etched in the first portion from the tensile-strained silicon layer and the undoped silicon layer and in the second portion from the compressed SiGe layer.
Abstract:
A semiconductor device comprises first stack of nanowires arranged on a substrate comprises a first nanowire and a second nanowire, the second nanowire is arranged substantially co-planar in a first plane with the first nanowire the first nanowire and the second nanowire arranged substantially parallel with the substrate, a second stack of nanowires comprises a third nanowire and a fourth nanowire, the third nanowire and the fourth nanowire arranged substantially co-planar in the first plane with the first nanowire, and the first nanowire and the second nanowire comprises a first semiconductor material and the third nanowire and the fourth nanowire comprises a second semiconductor material, the first semiconductor material dissimilar from the second semiconductor material.
Abstract:
A method for forming CMOS devices includes masking a first portion of a tensile-strained silicon layer of a SOI substrate, doping a second portion of the layer outside the first portion and growing an undoped silicon layer on the doped portion and the first portion. The undoped silicon layer becomes tensile-strained. Strain in the undoped silicon layer over the doped portion is relaxed by converting the doped portion to a porous silicon to form a relaxed silicon layer. The porous silicon is converted to an oxide. A SiGe layer is grown and oxidized to convert the relaxed silicon layer to a compressed SiGe layer. Fins are etched in the first portion from the tensile-strained silicon layer and the undoped silicon layer and in the second portion from the compressed SiGe layer.
Abstract:
A semiconductor structure is provided that includes at least one punch-through stop base structure having concave outermost sidewalls and located on a semiconductor surface of a semiconductor substrate. The structure further includes a pair of semiconductor fins extending upwards from a topmost surface of the at least one punch through stop base structure. The structure even further includes a trench isolation structure located laterally adjacent each of the concave outermost sidewalls of the at least one punch-through stop base structure, wherein a dopant source dielectric material liner is located on each of the concave outermost sidewalls of the at least one punch-through stop base structure and is present between the at least one punch-through stop base structure and the trench isolation structure.
Abstract:
Embodiments for the present invention provide a semiconductor device and methods for fabrication. In an embodiment of the present invention, a semiconductor structure comprises a first conductor horizontally formed on a semiconductor substrate. A second conductor is vertically formed in a semiconductor stack that includes the semiconductor substrate. An oxidized region is formed proximate to the first conductor. The second conductor is formed in a manner to be in electrical communication with the first conductor. The first conductor is formed in a manner to be laterally connected to the second conductor. The first conductor is formed in a manner to not traverse beneath the oxidized region. The first conductor is formed in a manner to have a reduced link-up resistance with adjacent epitaxial material included in the semiconductor structure.
Abstract:
An array of stacks containing a semiconductor fins and an oxygen-impermeable cap is formed on a semiconductor substrate with a substantially uniform areal density. Oxygen-impermeable spacers are formed around each stack, and the semiconductor substrate is etched to vertically extend trenches. Semiconductor sidewalls are physically exposed from underneath the oxygen-impermeable spacers. The oxygen-impermeable spacers are removed in regions in which semiconductor fins are not needed. A dielectric oxide material is deposited to fill the trenches. Oxidation is performed to convert a top portion of the semiconductor substrate and semiconductor fins not protected by oxygen-impermeable spacers into dielectric material portions. Upon removal of the oxygen-impermeable caps and remaining oxygen-impermeable spacers, an array including semiconductor fins and dielectric fins is provided. The dielectric fins alleviate variations in the local density of protruding structures, thereby reducing topographical variations in the height of gate level structures to be subsequently formed.
Abstract:
A first silicon-germanium alloy layer is formed on a semiconductor substrate including silicon. A stack of a first silicon layer and a second silicon-germanium alloy layer is formed over a first region of the first silicon-germanium alloy layer, and a second silicon layer thicker than the first silicon layer is formed over a second region of the first silicon-germanium alloy layer. At least one first semiconductor fin is formed in the first region, and at least one second semiconductor fin is formed in the second region. Remaining portions of the first silicon layer are removed to provide at least one silicon-germanium alloy fin in the first region, while at least one silicon fin is provided in the second region. Fin field effect transistors can be formed on the at least one silicon-germanium alloy fin and the at least one silicon fin.
Abstract:
Methods and structures for forming a localized silicon-on-insulator (SOI) finFET are disclosed. Fins are formed on a bulk substrate. Nitride spacers protect the fin sidewalls. A shallow trench isolation region is deposited over the fins. An oxidation process causes oxygen to diffuse through the shallow trench isolation region and into the underlying silicon. The oxygen reacts with the silicon to form oxide, which provides electrical isolation for the fins. The shallow trench isolation region is in direct physical contact with the fins and/or the nitride spacers that are disposed on the fins. Structures comprising bulk-type fins, SOI-type fins, and planar regions are also disclosed.
Abstract:
A fin structure includes an optional doped well, a disposable single crystalline semiconductor material portion, and a top semiconductor portion formed on a substrate. A disposable gate structure straddling the fin structure is formed, and end portions of the fin structure are removed to form end cavities. Doped semiconductor material portions are formed on sides of a stack of the disposable single crystalline semiconductor material portion and a channel region including the top semiconductor portion. The disposable single crystalline semiconductor material portion may be replaced with a dielectric material portion after removal of the disposable gate structure or after formation of the stack. The gate cavity is filled with a gate dielectric and a gate electrode. The channel region is stressed by the doped semiconductor material portions, and is electrically isolated from the substrate by the dielectric material portion.
Abstract:
A semiconductor structure includes a material stack located on a surface of a semiconductor substrate. The material stack includes, from bottom to top, a silicon germanium alloy portion that is substantially relaxed and defect-free and a semiconductor material pillar that is defect-free. A dielectric material structure surrounds sidewalls of the material stack and is present on exposed portions of the semiconductor substrate.