摘要:
A selective semiconductor deposition process that employs an alternating sequence of a deposition step and an etch step. During each deposition step, a semiconductor material is deposited on single crystalline surfaces at a greater deposition rate than on insulator surfaces. A combination of hydrogen chloride and a germanium-containing gas is employed within each etch step. The germanium-containing gas is employed to enhance the etch rate of hydrogen chloride, thereby enabling an effective etch process at temperatures as low as 380° C. Deposited semiconductor material is removed from above insulator surfaces, while a fraction of the deposited semiconductor material remains on semiconductor surfaces after each etch step, thereby providing a selective deposition of the semiconductor material.
摘要:
A process for etching a bulk integrated circuit substrate to form features on the substrate, such as fins, having substantially vertical walls comprises forming an etch stop layer beneath the surface of the substrate by ion implantation, e.g., carbon, oxygen, or boron ions or combinations thereof, masking the surface with a patterned etching mask that defines the features by openings in the mask to produce a masked substrate and etching the masked substrate to a level of the etch stop layer to form the features. In silicon substrates, ion implantation takes place along a silicon crystalline lattice beneath the surface of the substrate. The etchant comprises a halogen material that etches undoped silicon faster than the implants-rich silicon layer. This produces a circuit where the fins do not taper away from the vertical where they meet the substrate, and corresponding products and articles of manufacture having these features.
摘要:
A semiconductor device, having a heterogeneous silicon stack, wherein the heterogeneous silicon stack comprises at least a base layer, a doped silicon layer, and an undoped silicon layer. The semiconductor device further includes a plurality of silicon fins atop a doped silicon oxide fin layer and an undoped silicon oxide fin layer, wherein the plurality of silicon fins have a uniform width along the height of the plurality of silicon fins, and wherein the plurality of silicon fins have a plurality of hard mask caps.
摘要:
A method for fabricating a self-aligned via structure includes forming a tri-layer mask on an ILD layer over a lower metal wiring layer, the tri-layer mask includes first and second insulating layers and a metal layer in between the insulating layers; defining a trench pattern through the first insulating layer and metal layer, the trench pattern having a first width; defining a first via pattern in a lithographic mask over the trench pattern, the first via pattern having a second width that is larger than the first width; growing a metal capping layer on an exposed sidewall of the trench pattern to decrease the first width to a third width that defines a second via pattern; transferring the trench pattern into the ILD layer to form a trench; and transferring the second via pattern through the ILD layer and into the metal wiring layer to form a via.
摘要:
A metal layer is deposited over a material layer. The metal layer includes an elemental metal that can be converted into a dielectric metal-containing compound by plasma oxidation or nitridation. A hard mask portion is formed over the metal layer. A plasma impermeable spacer is formed on at least one first sidewall of the hard mask portion, while at least one second sidewall of the hard mask portion is physically exposed. Plasma oxidation or nitridation is performed to convert physically exposed surfaces of the metal layer into the dielectric metal-containing compound. A sequence of a surface pull back of the hard mask portion, cavity etching, another surface pull back, and conversion of top surfaces into the dielectric metal-containing compound are repeated to form a hole pattern having a spacing that is not limited by lithographic minimum dimensions.
摘要:
In one embodiment, a semiconductor device is provided that includes a gate structure present on a channel portion of a fin structure. The gate structure includes a dielectric spacer contacting a sidewall of a gate dielectric and a gate conductor. Epitaxial source and drain regions are present on opposing sidewalls of the fin structure, wherein surfaces of the epitaxial source region and the epitaxial drain region that is in contact with the sidewalls of the fin structure are aligned with an outside surface of the dielectric spacer. In some embodiments, the dielectric spacer, the gate dielectric, and the gate conductor of the semiconductor device are formed using a single photoresist mask replacement gate sequence.
摘要:
In one embodiment, a semiconductor device is provided that includes a gate structure present on a channel portion of a fin structure. The gate structure includes a dielectric spacer contacting a sidewall of a gate dielectric and a gate conductor. Epitaxial source and drain regions are present on opposing sidewalls of the fin structure, wherein surfaces of the epitaxial source region and the epitaxial drain region that is in contact with the sidewalls of the fin structure are aligned with an outside surface of the dielectric spacer. In some embodiments, the dielectric spacer, the gate dielectric, and the gate conductor of the semiconductor device are formed using a single photoresist mask replacement gate sequence.
摘要:
A method for semiconductor fabrication includes patterning one or more mandrels over a semiconductor substrate, the one or more mandrels having dielectric material formed therebetween. A semiconductor layer is formed over exposed portions of the one or more mandrels. A thermal oxidation is performed to diffuse elements from the semiconductor layer into an upper portion of the one or more mandrels and concurrently oxidize a lower portion of the one or more mandrels to form the one or more mandrels on the dielectric material.
摘要:
A method including forming a sacrificial metal cap on a metal line formed in a first dielectric layer; forming a second dielectric layer on the first dielectric layer; removing the sacrificial metal cap selective to the second dielectric layer and metal line to form a cap opening; forming a dielectric cap in the cap opening and on the metal line; forming an interconnect dielectric layer over the dielectric cap and the second dielectric layer; forming an interconnect opening in the interconnect dielectric layer; removing a portion of the dielectric cap exposed by the interconnect opening selective to the interconnect dielectric layer, the second dielectric layer, and the metal line; and forming an interconnect structure in the interconnect opening, the interconnect structure comprising a contact line above a via, the via having an upper via portion with angled sidewalls and a lower via portion with substantially vertical sidewalls.
摘要:
The embodiments of the present invention relate generally to the fabrication of integrated circuits, and more particularly to a structure and method for fabricating a pair of ultra-thin metal wires in an opening using a selective deposition process.