Abstract:
An objective is to provide a radiation flat panel detector in which degradation of a phosphor layer property during aging is inhibited, the phosphor layer is protected from chemical alteration and physical impact, and sharpness is excellent. Also disclosed is a flat panel detector possessing a light-receiving element and provided thereon, a scintillator panel possessing a scintillator sheet having a phosphor layer provided on a substrate and provided thereon, a first protective film placed on the phosphor layer side and a second protective film placed on the substrate side to seal the scintillator sheet, wherein the light-receiving element is provided on the first protective film side of the scintillator panel; and the scintillator sheet is sealed at 5-8000 Pa.
Abstract:
First wirings and first dummy wirings are formed in a p-SiOC film formed on a substrate. A p-SiOC film is formed, and a cap film is formed on the p-SiOC film. A dual damascene wiring, including vias connected to the first wirings and the second wirings, is formed in the cap film and the p-SiOC film 22. Dummy vias are formed on the periphery of isolated vias.
Abstract:
A lower carbon film as a provisional film, a lower SiO2 film and an upper carbon film are formed, and then trenches having a wiring pattern are formed in the upper carbon film. Next, contact holes are formed through the lower carbon film and the lower SiO2 film. Then, wires and plugs are formed by filling in the trenches and contact holes with a barrier metal film and a Cu alloy film. After these process steps are repeatedly performed several times, a dummy opening is formed to extend downward through the uppermost SiO2 film. Thereafter, the carbon films are removed by performing ashing with oxygen introduced through the dummy opening. As a result, gas layers are formed to surround the wires and plugs. In this manner, a highly reliable gas-dielectric interconnect structure can be obtained by performing simple process steps.
Abstract:
A method for fabricating a semiconductor device including a silicon region and a cobalt silicide film, the cobalt silicide film being in contact with at least a part of the silicon region. The method includes the steps of: doping at least part of the silicon region with boron by setting a doping level of boron in the part at 1.times.10.sup.15 cm.sup.-3 or more; depositing a cobalt film over a surface of the silicon region; conducting a first heat treatment for producing a silicidation reaction in a contact region between the cobalt film and the silicon region and thereby forming the cobalt silicide film; selectively removing unreacted portions of the cobalt film that have not been turned into silicide; and conducting a second heat treatment at a temperature higher than a temperature set for the first heat treatment step, thereby inducing a phase transition in the cobalt silicide film. The first heat treatment step is performed within a reducing ambient gas, and the temperature set for the first heat treatment step is in the range from about 400.degree. C. to about 600.degree. C., both inclusive.
Abstract:
On a semiconductor substrate, chips to be products and alignment chips located at a portion a part thereof is left out from a peripheral part of the semiconductor substrate are formed. Contact holes and alignment marks are formed at the chips to be products and the alignment chips. Covering the alignment chips with alignment mark cover parts of a substrate holder, a material for metal wiring is deposited on the semiconductor substrate to form a metal film on the substrate. A mask pattern is formed on the metal film using the alignment marks of the alignment chips on which the metal film is not formed.
Abstract:
It is an object of the invention to provided an electrically erasable and programmable non-volatile semiconductor memory device, in which misread of a datum stored in a memory cell can be avoided by suppressing floating of the potentials of a memory cell source wire and a word wire in case that the operation of the memory device shifts from erasing pulse application to erase verify. Two transistors with different current-driving capabilities are connected in parallel and inserted between the memory cell source wire and the ground plane. When the operation of the memory device shifts from erasing pulse application to erase verify, a N-type transistor with lower current-driving capability turns on at fist, thereby the potential of the memory cell source wire is slowly reduced, and the other transistor with higher current-driving capability turns on afterward. After the memory cell source wire is connected with the ground plane and its potential is perfectly stabilized, the datum stored in the memory cell can be normally read.
Abstract:
In a method of initializing a flash EEPROM, a pre-programming operation of a predetermined data is first performed in a plurality of memory cells of a memory cell array and then an erasing operation is performed to the plurality of memory cells. Then, a verifying operation of whether the erasing operation is correctly performed is performed. During an initializing operation composed of the pre-programming operation, the erasing operation and the verifying operation, electrons or holes trapped in a tunnel oxide film are pulled out.
Abstract:
A semiconductor nanoparticle and semiconductor nanorod that have optical characteristics (luminescence intensity and emission lifetime) superior to those of conventional core/shell nanosized semiconductors. There are provided a triple-layer semiconductor nanoparticle, and triple-layer semiconductor nanorod, having an average particle diameter of 2 to 50 nm and comprising a core layer, an interlayer and a shell layer, wherein the layers are composed of different crystals, and wherein the crystal constructing the shell layer exhibits a band gap greater than that of the crystal constructing the core layer, and wherein the crystal constructing the interlayer has a lattice constant assuming a value between those of the crystal constructing the core layer and the crystal constructing the shell layer.
Abstract:
A scintillator panel comprising: a radiation-transparent substrate; and a phosphor layer provided on the substrate, the phosphor layer emitting light when irradiated with a radiation, wherein at least one edge of the substrate and at least one edge of the phosphor layer are arranged on a same plane.
Abstract:
First wirings and first dummy wirings are in a p-SiOC film on a substrate. A p-SiOC film is formed, and a cap film is formed on the p-SiOC film. A dual damascene wiring, including vias connected to the first wirings and the second wirings, is formed in the cap film and the p-SiOC film 22. Dummy vias are formed on the periphery of isolated vias.