Abstract:
Embodiments of the disclosure relate to intermetallic nanoparticles. Embodiments include nanoparticles having an intermetallic core including a first metal and a second metal. The first metal may be palladium and the second metal may be at least one of cobalt, iron, nickel, or a combination thereof. The nanoparticles may further have a shell that includes palladium and gold.
Abstract:
A negative electrode active material including a silicon-containing alloy having a predetermined composition is used in an electric device. A ratio value (B/A) of a diffraction peak intensity B of a (001) plane of Sn to a diffraction peak intensity A of a (111) plane of Si is 0.3 or more and 3.7 or less in an X-ray diffraction measurement of the silicon-containing alloy using a CuKα1 ray. Here, the diffraction peak of the (111) plane of Si is present in a range of 2θ=24 to 33° and the diffraction peak of the (001) plane of Sn is present in a range of 2θ=26 to 35°.
Abstract:
The present subject matter describes Ni—Al—Zr alloys, which include Ni as the major component, with the additions of 9-20% Al and 4-14% Zr by atomic percentage. In one embodiment, the present subject matter describes a group of alloy compositions in a Nickel-Aluminum-Zirconium (Ni—Al—Zr) system corresponding to a concentration range of about 9-20% Al and about 4-14% Zr by atomic percentages, and the balance being Ni. In other embodiment, the present subject matter includes at least one eutectic constituent including at least two of the intermetallic compounds or phases Ni3Al, NiAl, Ni5Zr, Ni7Zr2 and derivatives that are realized within the aforementioned composition group.
Abstract:
New beta-style (bcc) titanium alloys are disclosed. The new alloys generally include 4-8 wt. % Al, 4-8 wt. % Nb, 4-8 wt. % V, 1-5 wt. % Mo, optionally 2-6 wt. % Cr, the balance being titanium, optional incidental elements, and unavoidable impurities. The new alloys may realize an improved combination of properties as compared to conventional titanium alloys.
Abstract:
Methods and assemblies for the construction of liquid-phase alloy nanoparticles are presented. Particle formation is directed by molecular self-assembly and assisted by sonication. In some embodiments, eutectic gallium-indium (EGaIn) nanoparticles are formed. In these embodiments, the bulk liquid alloy is ultrasonically dispersed, fast thiolate self-assembly at the EGaIn interface protects the material against oxidation. The assembly shell has been designed to include intermolecular hydrogen bonds, which induce surface strain, assisting in cleavage of the alloy particles to the nanoscale. X-ray diffraction and TEM analyses reveal that the nanoscale particles are in an amorphous or liquid phase, with no observed faceting.
Abstract:
Provided are a method for producing an electrode material for a vacuum circuit breaker, whereby withstand voltage, high current interruption performance and capacitor switching performance can be improved; an electrode material for a vacuum circuit breaker; and an electrode for a vacuum circuit breaker. A contact material for an electrode for a vacuum circuit breaker has an integral structure consisting of a central member and a Cu—Cr outer peripheral member, the central member having been produced as described above and comprising 30 to 50 wt % of Cu of a particle diameter of 20 to 150 μm and 50 to 70 wt % of Mo—Cr of a particle diameter of 1 to 5 μm, while the outer peripheral member being formed of a material, which is highly compatible with the central member, shows excellent interruption performance and had high withstand voltage, and being provided outside the central member and fixed thereto.
Abstract:
A method for forming a densified solid object corresponding to a thermoelectric element from a mixture of uncompressed, powdered constituent materials. A powdered precursor material may be selected to cause a shrinkage of at least twenty percent in at least two mutually orthogonal linear dimensions of a densified solid object compared to corresponding dimensions of a mold cavity. In some embodiments, a precursor material is selected to produce a thermoelectric material having electrical and mechanical properties suitable for a thermoelectric module. In some embodiments, at least two thermoelectric elements are electrically connected to conductive plates to form a thermoelectric module.
Abstract:
A repair method that includes covering a damaged part of a member to be repaired with a repair material, and heating the repair material to a predetermined temperature to form an alloy layer. At least the surface of the member to be repaired is a first metal such as Cu. The repair material includes a second metal such as Sn. By the heating, the surface of the member to be repaired is integrally joined with a layer of an intermetallic compound and an alloy having a melting point higher than a melting point of either of the first metal or the second metal.
Abstract:
An improved mercury-dispensing combination of materials is made up of a compound A including mercury and a second metal selected among titanium, zirconium and mixtures thereof and an alloy or an intermetallic compound B including copper and tin, said mercury-dispensing combination of materials further containing an amount of oxygen comprised between 0.03% and 0.48% with respect to the overall weight of the composition A+B. It is also possible to add a getter material C that includes metals such as titanium, zirconium, tantalum, niobium, vanadium and mixtures thereof or their alloys with other metals such as nickel, iron, aluminum.
Abstract:
In a method for producing form bodies for heat exchangers, comprising a thermomagnetic material, said form bodies having channels for passage of a fluid heat exchange medium, a powder of the thermomagnetic material is introduced into a binder, the resulting molding material is applied to a carrier by printing methods, and the binder and if appropriate a carrier are removed subsequently and the resulting green body is sintered.